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Abstract. This paper seeks to raise awareness on the SCR extensions derived
from industry use, and discusses how an integration of Software Cost Reduction
(SCR) modeling concepts address current limitations in the System Modeling
Language (SysML) standard. The paper describes an integration of a formal
requirement modeling approach based the SCR method with the SysML
structure mechanisms providing an alternative means for formalizing
requirement behavior using a table-based approach that is supported by tools
that extend the original SCR method.
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1 Introduction

Model Driven Engineering (MDE) is fundamentally based on relevant abstractions
and complementary tool automation. The emergence of domain specific modeling
languages (DSML) demonstrates the need for modeling based on relevant abstractions
that are simplified to suit the users. The System Modeling Language (SysML) is a
DSML that extends the Unified Modeling Language (UML) for system engineers.
The SysML requirement blocks rely on text-based statements that lack formal
behavioral semantics, which limits tool analysis and simulation that can help in
identifying defects or anatomies in requirements.

The Software Cost Reduction (SCR) method is a requirement modeling method
with various types of tool support. SCR has been applied to large-scale industrial
applications dating back nearly 30 years [1], [2] while demonstrating measurable
benefits for helping to reduce requirement defects resulting in reduced program cost
[3]. SCR modeling is fundamentally based on the use of tables that represent
condition and event functions, and mode classes. The behavior formalism provides
precise syntax and semantics that leverage tool-based analysis and simulation
supporting defect identification in large and complex systems. Driven by industrial
need, extensive tool support has been developed to support model transformation,
simulation, analysis, property provers, and test vector generation. Users’ needs have
driven extensions to the original SCR such as support for structure and array data
types, parameterized functions, and quantifiers. Recently a DSML and tool have been
created that leverages some new SCR-based tool capabilities while demonstrating the
general applicability of the fundamental modeling concepts underlying SCR. The
DSML leverages the model analysis, which not only provides a means for verifying
the model, but supports automated verification of the resulting implementation, and
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provides an efficient means for verifying the evolution of the domain specific
modeling language, modeling tool and tool transformations through SCR-based tools.

An objective of this paper is to raise awareness of the SCR extensions derived from
industry use, and discuss how the integration of SCR concepts address current
limitations in the SysML standard especially as it applies to requirement modeling.
This paper discusses the model integration of SysML with an extension based on the
SCR method for requirement modeling. While working with many companies on
programs applications in domains such as avionic, aerospace, defense, automotive,
medical, it is clear that system engineers develop requirements from a functional point
of view. SCR inherently supports this functional point of view, and can semantically
integrate formalized behavior with the structural interface mechanisms of SysML.

Section 2 discusses usage of SCR on large scale industrial projects and discusses
the practical importance of providing system engineers with a functional-based
approach to requirement modeling. Section 3 discusses the conceptual integration of
SysML with SCR and tool support. Section 4 briefly discusses alternative methods
that formalize requirements, and summarizes why SCR may be the best approach for
system engineers while addressing a limitation in SysML.

2  Industrial Examples of SCR

The SCR method has been used on many types of system in various domains [4]. The
Systems and Software Consortium (SSCI) has worked with members using many
modeling approaches and tools including the SCR method and tools. This section
discusses a few perspectives gained from working with members adopting SCR or in
doing assessments of program engineering and modeling practices.

A typical process for system engineers begins with customer requirements and
proceeds through functional analysis, where design tradeoffs are made, resulting in
derived requirements that are allocated to subsystems. The use of models at the
system levels for industrial systems that include hardware, electrical, hydraulic, and
other mechanical controls with significant software content is too often semi-formal
combining some models with text or diagrams or spreadsheets. Semi-formal models
are inadequate for understanding dependencies across subsystems as well as impact
analysis resulting from changes at the systems level. Many systems today are often
part of a product family (e.g., aircraft variants, ground vehicles) and there are many
opportunities for efficiency that can be gained by models that are semantically related
across the various subsystems in different variants.

Example 1: Lockheed Martin documented their use of SCR on the C130J program
back in 1994 [2]. They have recently upgraded the tools and helped drive extensions
to the SCR method such as parameterized function tables, strings, arrays and
quantification. They are applying the method to a product family derived from the
original C130J and have converted thousands of tables from a legacy tool to newer
model-based tools. They have established a process that uses a baseline of several
thousand SCR tables (requirements) for different avionics functions of the C130J
aircraft. They are able to include elements from the baseline and either override or
extend with new custom-specific requirements models in SCR. They have provided



automatic document generation from the requirements that provide functional views
of the customer requirements that are then allocated to the various subsystems.

Example 2: the Lockheed Martin C-5M program recently documented the result of
applying the SCR method [3]. The program developed several thousand requirements
modeled as SCR tables spanning numerous versions and releases. Requirement
modeling helped to develop better requirements and interface information to support
the design and implementation process. The systems engineers used requirement
simulations of the models to validate the correctness and consistency of the
requirements. The requirement modeling and simulation processes uncovered a large
number of requirement defects prior to software implementation. Measurement data
substantiates the claimed process improvements and program benefits. Measurement
data supports the conclusion that the C-5M program process detected defects earlier,
had about %2 the total number of defects, and on average corrected the defects twice as
fast as on another related program, the C-5 AMP.

Example 3: System engineers and their customers view the system from the
perspectives of functions that satisfy customer needed capabilities. During a recent
program assessment, the projects used UML-based modeling at the system level, but
stated that the functional view is lost in what ends up being a more object-oriented
view of the system. The object-oriented view tends to result in a more bottom-up view
focused more on design. In contrast SCR provides a functional view, which might be
more applicable to system engineers working top down from functional analysis of
customer requirements.

Example 4: as discussed in Section 1, another SSCI member has been working on a
research project to demonstrate the development of a DSML and tool chain. The
DSML model is transformed into a SCR model and tools support model analysis,
consistency checking (e.g., disjointness, race conditions), and test vector and test
driver generation for verifying the implementation associated with the models. The
key point is that the underlying SCR modeling concepts are sufficiently general to
support the DSML.

Examples 1 and 2 illustrate two successful uses of SCR. However, in both cases,
the SCR lacks an explicit context of how the functions are allocated to the system
blocks. This gap provides the opportunity for leveraging the SysML structure
modeling capabilities when integrating with SCR behavior modeling.

3 Model Integration of SCR and SysML

SCR models represent required functionality of a system or component using tables to
relate monitored variables (inputs) to controlled variables (outputs), as reflected in
Fig. 1. There are three basic types of tables: 1) Condition Table, 2) Event Table, and
3) Mode Transition Table. A mode transition table is a type of state machine, where
related system states are called system modes, and the transitions of the state machine
are characterized by events. An event occurs when any system entity changes value.
A condition is a predicate characterizing a system state. A term is any function
defined in terms of input variables, modes, or other terms. The SCR tables can be
combined to specify complex relationships between monitored and controlled
variables using mode or terms variables. This allows common conditions, events, and
modes to be defined once, and referenced multiple times. For mapping SCR into



SysML, there are at least two ways: 1) the SCR modeling constructs can be used to
represent requirements at the use case level; the actors may relate to monitored or
controlled variables, and the use case function is modeled as SCR tables; 2) SCR
could be used to model the requirements or derived requirements of any block, where
the interfaces of the block are mapped to SCR inputs and outputs. As reflected in Fig.
1. a new SCR feature includes parameterized function tables. A function can be
referenced by one more condition, event, model or function tables.
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Fig. 1. One or more SCR condition, event, or mode tables are used to relate monitored (input)
variables to controlled (output) variables. Parameterized function tables are a new extension
that can be referenced by one or more tables.

Heitmeyer provides a historical perspective on SCR, and tool summary [5]. Tool-
based automation for SCR includes functions for model creation, consistency
checking, model checking, simulation, invariant generation, test vector generation, as
well as integration with requirement management tools and theorem provers that can
be used to evaluate security and safety properties. New SCR extensions include data
types for strings, structures, and arrays, parameterized function tables, modeling
constructs for quantification, assertions, inlining and model libraries. These
extensions provide greater requirement formality with tool automation to help system
engineers in early validation of the requirements with automatically generated
requirement-based test artifacts to support verification, and requirement-to-test
traceability.



4 Conclusions

This paper discusses how the integration of SCR concepts addresses current
limitations in the SysML standard especially as it applies to formal requirement
modeling. It also discusses some SCR extensions developed to meet the needs of
industry users. There are other formal requirements modeling methods and associated
tools such as such as RSML and its variants SpecTRM [7] or the KAOS [8] goal-
driven methodology that could provide greater rigor for SysML. The simplicity and
generality of the SCR modeling method and extensive tool support may make it easily
applicable to SysML. As discussed in Section 3, the integration is relatively
straightforward, and provides formal requirement modeling that might be easy to use
by system engineers that do not have extensive programming background. This could
address a problem stated by a representative of one of the leading commercial
modeling tool suppliers. Their tool, like many of the competitors provides extensive
support for UML and SysML, however, the process steps required for constructing a
model of the system that can be used for analysis and simulation is complex. To
enable the models to support simulation, users must be able to complete aspects of
sequence or state machines using some form of programming language. The effort
involved to gain proficiency is often a barrier to entry for system engineers. Finally,
Lutz reported that the primary cause of safety-related faults was errors in functional
and interface requirements [6]. The cases cited in Section 2 have shown that modeling
helps identify defects, but if the modeling tools and methods are too complex to use,
the lack of use of tools on complex systems increases the likelihood that defects will
go undetected.
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