
T-VEC Technologies, Inc.

Copyright © 2010, T-VEC Technologies, Inc.

Model-Driven Verification and Validation

Presented at:
Safe & Secure Systems & Software Symposium

June, 2010

By
Mark R. Blackburn, Ph.D.

2Copyright © 2010, T-VEC Technologies, Inc.

Time

C
o

s
t/

E
ff

o
rt

Requirements Design,

Build, &

Unit Test

Integration

Test

ReleaseQualification

Test

Effort /

Costs

Point A: 1985 -Verification for safety-critical

system was 70% of total cost; many people

added to project to test (mostly manual)

2009 - META Program: Failure to update 1960s- systems

engineering process significantly increases cost and schedule

3Copyright © 2010, T-VEC Technologies, Inc.

Complete the Storyboard

Point B: We must produce systems of the

same complexity as hardware with similar

costs and schedules

4Copyright © 2010, T-VEC Technologies, Inc.

 First of all, it can be very challenging to construct faithful mathematical

models of complex systems.

 For hardware, it's relatively easy to extract

mathematical models, and we've made a lot of

progress.

For software, the problem is quite a bit more

difficult. It depends on how the software is

written, but we can verify a lot of complex

software.
 But for systems consisting of software running on hardware, we don't

know how to construct faithful mathematical models for their

verification.
* Quotes from Talking Model-Checking Technology by Leah Hoffman

(A conversation with Joseph Sifakis the 2007 ACM A.M. Turing Award winners.)

Joseph Sifakis, one of the 2007 ACM A.M. Turing

Award winners, discussed things about modeling

and verifying software systems

5Copyright © 2010, T-VEC Technologies, Inc.

Call to action:

We have to address the differences between

software-systems and hardware (ICs)

What’s

Different?
Software behavior

often relies on floating

point variables with

non-linear

relationships and

constraints

6Copyright © 2010, T-VEC Technologies, Inc.

Three things matter

• How you write the software matters

 Models have to map to the implementation

• “Verification engine” needs to be powerful

 Need to cover every type of modeling construct, even non-

linear ones

• Modeling has to be “easy” to use

 Don’t need to understand theorem proving

7Copyright © 2010, T-VEC Technologies, Inc.

TCAS Function

Own Aircraft

Traffic and Collision Avoidance System (TCAS):

Issues Warnings and Resolution Advisories for Potential Collisions

Key Point #1 – 1988 - we started with the problem

where we had to address model-based verification of

non-linear functions and constraints for the surveillance

and tracking of aircraft

8Copyright © 2010, T-VEC Technologies, Inc.

Used

constructive

V&V approach

based on

recursive

modeling that

mapped to

implementation

to produce

V&V evidence

during

development

• Identify interfaces

• Model requirements

• Factor in safety constraints

• Generate test vectors

• Generate test drivers

• Execute tests

• Check test coverage

Unit

Test

V&V

Analysis and

Reviews

Implement

and Package

Integration

Test

System

Test
Specify

Requirements

Thread

Thread

Thread

Specify

Architecture

Specify

Design

9Copyright © 2010, T-VEC Technologies, Inc.

. . .

Surveillance

And

Tracking

Process

Own Aircraft

Data

Process

Track

Data

Process

Threats

Generate

Threat

Advisory

Process

Multiple

Threats

Process

Vertical

Rate

Generate

Advisories

Target Environment

Send

TCAS

Intent Msg

1 2 3 4

3.1 3.2 3.3 3.4

System

Design

Environment

and Interfaces

Functional + Nonfunctional

Requirements and Design

Architectural

Implementation

Environment

Functional + Nonfunctional

Requirements and Design

Environment

and Interfaces

Specification

Structure

Environment and Interfaces

Hierarchical specification (model) addressing

implementation-derived requirements while ensuring

design for controllability and observability

to support unit, integration and system testing

Similar to Simulink Models

Mapping

10Copyright © 2010, T-VEC Technologies, Inc.

• A precondition (DCP) defines
ANDed set of constraints on
inputs

• A postcondition defines the output
as a function of the constrained
inputs

Precondition Postcondition

defines used as inputs

DCP: Constraint 1 output = f1(inputs)
OR
DCP: Constraint 2 output = f2(inputs). . .

. . .

. . .

Specification

Model

(Subsystem)

Specification

Model

(Subsystem)

Specification

Model

(Subsystem)

Specification

Model

(Subsystem)

Specification

Model

(Subsystem)

DCP: Domain Convergence Path

Thread

Threads are hierarchies of subsystems

transformed at the lowest level into

preconditions and postcondition sets

11Copyright © 2010, T-VEC Technologies, Inc.

Any node is

a predicate

that can be a

math, logical,

relational

construct, or

model reference

Test vectors are generated for each domain

convergence path for all hierarchical subsystems if the

constraints are satisfiable

For example

Deepest subsystem hierarchy 11 levels

12Copyright © 2010, T-VEC Technologies, Inc.

1988 –

fundamental

concepts of

first generation

tools still

relevant today

System

Knowledge

Test

Vectors

Test

Report

Specifications

(Model)

T-VEC
Compiler

Test
Driver

Generator

Model-based
Coverage
Analyzer

Test
Vector

Generator

Specification
Editors

Test

Driver

(scripts)

13Copyright © 2010, T-VEC Technologies, Inc.

Execution and

Results

Analysis

Model-based

Coverage

Analysis

Test

Generation

T-VEC Test Vector

Generation System

Test Driver

Generation

Modeling

Environment
T-VEC

Tabular Modeler Simulink/Stateflow/EML

Functional Tabular Control System/State Machine/Hybrids

T-VEC Graphical

User Interface

Console

Interface

Requirement-based Design-based

Requirement

Management

Code

Coverage

1995 created a framework for integrating modeling and

other related tools focused on model analysis and test

automation with requirement-to-test traceability

http://www.mathworks.com/products/simulink/simulink_image.shtml
http://www.mathworks.com/products/simulink/simulink_image.shtml

14Copyright © 2010, T-VEC Technologies, Inc.

Model Transformation

Model

Analysis

Test

Generator

Test

Driver

Generator

Application/

Simulation

Test

Results

Analysis

Expected Outputs and Tolerances

Actual

Outputs

Design

Model

Requirement

Model

Application

Critical

Properties

Simulink Tester

Simulink/

Stateflow

Models

T-VEC

Tabular

Modeler

(TTM)

Assertions

DCP: Domain Convergence Path

Example

to follow

Transformed models are analyzed by theorem prover to

ensure precondition is satisfiable;

test inputs selected at subdomain boundaries and

expected outputs generated for testing application

15Copyright © 2010, T-VEC Technologies, Inc.

Test Driver Languages Database system

Client server

Web-based systems
• Java

• C++

• Ada

• Perl
• SQL/ODBC/JDBC

• XML

• SOAP

• WinRunner

• JCL

• Python

• Basis and VB

• Custom (graphics)

• Assembler

• shell

• command languages

• emulators

• proprietary

• more . . .

Mission/life critical

systems and high

dependability

components

Software modules

for unit and integration

testing

Test Driver

Generation

Test driver generation uses generic test vectors, object

mappings and test driver schema to produce a driver

that can run on host, target, or simulation environments

16Copyright © 2010, T-VEC Technologies, Inc.

TCAS Function Key Point #2 – tool chains are emerging, because no

one tool solves the entire problem, and we need to

leverage the distinguishing capabilities of tools

Simulink

T-VEC Test Vector

Generation System

TTM
DOORS

Simulink

Tester GUI

LDRA

Thread

A

(80 Hz)

Thread

A

(80 Hz)

Thread

C

(5 Hz)

Watch Dog

Timer

Thread

D

(1 Hz)

Kernel

Hardware (HW)

Partition

Thread

D

(1 Hz)

Thread

B

(20 Hz)

Thread

B

(20 Hz)

Thread

A

(80 Hz)

Thread

A

(80 Hz)

Thread

C

(5 Hz)

Watch Dog

Timer

Thread

D

(1 Hz)

Kernel

Hardware (HW)

Partition

Kernel

Hardware (HW)

Partition

Thread

D

(1 Hz)

Thread

B

(20 Hz)

Thread

B

(20 Hz)

unit

integration

system

flight/other

?

Requirement-based

for manual or auto-coded

17Copyright © 2010, T-VEC Technologies, Inc.

Analysis

capabilities often

needed to ensure

model is defect

free before code

generation and

verification
(Tool capabilities vary

significantly)
Key: Categories

H: High - relatively complete

S: Some

L: Low

U: Unknown - possible

A: Absorbed - unnecessary

I: Provided through tight tool integration

18Copyright © 2010, T-VEC Technologies, Inc.

Example Simulink model seeded with a defect involving

trivial non-linear operation involving floating point signal

with goal to see if tools could identify defect

19Copyright © 2010, T-VEC Technologies, Inc.

fy

0.00E+00

2.00E+00

4.00E+00

6.00E+00

8.00E+00

1.00E+01

1.20E+01

0.00E+00 5.00E-01 1.00E+00 1.50E+00 2.00E+00 2.50E+00 3.00E+00 3.50E+00 4.00E+00 4.50E+00

fy

fy

0.00E+00

5.00E-01

1.00E+00

1.50E+00

2.00E+00

2.50E+00

3.00E+00

3.50E+00

0.00E+00 2.00E-01 4.00E-01 6.00E-01 8.00E-01 1.00E+00 1.20E+00 1.40E+00 1.60E+00 1.80E+00 2.00E+00

fy

fy

0.00E+00

5.00E-01

1.00E+00

1.50E+00

2.00E+00

2.50E+00

3.00E+00

3.50E+00

0.00E+00 2.00E-01 4.00E-01 6.00E-01 8.00E-01 1.00E+00 1.20E+00 1.40E+00 1.60E+00 1.80E+00 2.00E+00

fy

relational_constraint hierarchical_model_non_linear

non_linear_relationSatisfiable

Region

Outside

Region

Seeded defect defines a subspace that is not within the

subdomain of the other modeled subsystems

20Copyright © 2010, T-VEC Technologies, Inc.

T-VEC status report links to information describing the

unsatisfiable constraint and highlights the AND logical

operator that is not satisfiable

Status Report

21Copyright © 2010, T-VEC Technologies, Inc.

Design Verifier Report

T-VEC VGS

Number of Test Objectives: ….…124

Objectives Satisfied: ……….….. 73

Objectives Proven Unsatisfiable: ..11

Objectives Producing Errors: ……40

Validated by senior management from The Mathworks®

Mathworks’ Design Verifier (DV) did not

produce tests for some satisfiable test objectives

where T-VEC produced test vectors

22Copyright © 2010, T-VEC Technologies, Inc.

Specified Behavior

Term

Variables

Mode

Machines

Term

Variables

System, Software, or

Component

Output

Variables

Controlled

Variables

TTM Tabular Modeler

SCRtool 2.1

Mode

Classes

Assertions Functions

T-VEC Tabular Modeler (TTM) extends the Software

Cost Reduction (SCR) tool supporting richer data types

and additional behavioral modeling constructions

Event

Tables

Condition

Tables

Monitored

Variables

Input

Variables

23Copyright © 2010, T-VEC Technologies, Inc.

Altitude

Processing

Vertical

Tracker

Avoidance

Processing

Specify the behavior for components in a separate model, which

includes relevant TTM models that specify the interfaces

Altitude Processing Vertical Tracker
Avoidance

Processing

Tracking & Avoidance

Behavior

Interface

Model references allow for inheritance, overriding, and

separation of interface and behavior allowing for better

model management and reuse of models

24Copyright © 2010, T-VEC Technologies, Inc.

MODEL-BASED ADAPTATION OF FLIGHT-CRITICAL SYSTEMS, Sumit Ray, BAE Systems, Johnson City, New York, Gabor

Karsai, Vanderbilt University, Nashville, Tenneessee , Kevin M. McNeill, BAE Systems, Arlington, Virginia, Digital Avionics Systems

Conference, 2009

T-VEC VGSTTM

Flight Control domain-Specific

Language (FCSL)

Producible Adaptive Model-based Software (PAMS) technology to the development of safety critical flight

control software. PAMS has been developed under the Defense Advanced Research Projects Agency

(DARPA) Disruptive Manufacturing Technologies program. Contract # N00178-07-C-2011.

T-VEC Tabular Modeler (TTM) and Vector Generation

Systems has been integrated with a Domain Specific

Modeling Tool

25Copyright © 2010, T-VEC Technologies, Inc.

Key Point #3 – Fundamental changes in perspective

have the possibility of significant cost and effort

reductions

26Copyright © 2010, T-VEC Technologies, Inc.

Early interface-driven approach combines requirements

modeling and helps identify and correct requirements

defects provides tests before implementation

Requirements

(come in many forms)

Model

Interfaces

Data Types

Variables

Constants

Behavior

Conditions

Events

State machines

Functions

+

Engineer

(Modeler)

Test Driver

mapping

schema

Test

Vectors Test Driver
Generator

Engineer

(Automation Architect)

Design/Implementer

Test Vector
Generator

System

Test

Drivers

Test

Results

Component Interfaces

Requirement Engineer

• SRS

• Function List

• Change Request

• API

Time

27Copyright © 2010, T-VEC Technologies, Inc.

Getting the customer requirements

“right” supports validation

28Copyright © 2010, T-VEC Technologies, Inc.

2001

Analysis

Technique

/Tool

FGS

Textual

Requirements

1995

CoRE

Text

Model

Inspections

33

1997

27

U
n

iq
u

e
 D

e
fe

c
ts

SCRtool

Analysis

SCR

Model V1

1998

6

SCR /

T-VEC

TTM /

T-VEC

25

Rockwell Collins Pilot: Flight Guidance System (FGS) - Flight Critical Embedded System

As the tools matured more defects in the same model

where identified further illustrating that model-based

automation is better than manual inspection

29Copyright © 2010, T-VEC Technologies, Inc.

Organization have to understand that it takes more

effort up-front, but companies have evidence that it save

cost and effort at the end

30Copyright © 2010, T-VEC Technologies, Inc.

TCAS Function

• We have to change our mindset not just the tool set

• It matters how the software is produced

• The power of the verification engine matters and for
software we need to handle non-linearities

• We’d like to work to leverage our experience and tools to
address these DARPA-hard problems

Closing Point – Humans alone cannot do it;

automation is essential to completing the

V&V for safety-critical and complex systems

31Copyright © 2010, T-VEC Technologies, Inc.

Terms and Acronyms

AADL Architecture Analysis & Design Language

AP233 Application Protocol 233

ATL ATLAS Transformation Language

BPMLBusiness Process Modeling Language

CAD Computer-Aided Design

CASE Computer-Aided Software Engineering

CATIA Computer Aided Three-dimensional Interactive
Application

CDR Critical Design Review

CMM Capability Maturity Model

CMMI Capability Maturity Model Integration

CWM Common Warehouse Metamodel

DBMSDatabase Management System

DoDAF Depart of Defense Architectural Framework

DSL Domain Specific Languages

EMF Eclipse Modeling Framework

GME Generic Modeling Environment

IBM International Business Machines

ICD Interface Control Document

IEEE Institute of Electrical and Electronics Engineers

INCOSE International Council on Systems Engineering

IPR Integration Problem Report

ISO International Organization for Standardization

IT Information Technology

JET Java Emitter Template

LinuxAn operating system created by Linus Torvalds

MAP Modeling Adoption Practices

MARTE Modeling and Analysis of Real Time Embedded systems

MATRIXx Product family for model-based control system design
produced by National Instruments

MBT Model Based Testing

MDA® Model Driven Architecture®

MDD™ Model Driven Development

MDE Model Driven Engineering

MDSDModel Driven Software Development

MDSE Model Driven Software Engineering

MIC Model Integrated Computing

MMM Modeling Maturity Model

MoDAF United Kingdom Ministry of Defence Architectural
Framework

MOF Meta Object Facility

MVS Multiple Virtual Storage

NASA National Aeronautics and Space Administration

OCL Object Constraint Language

OMG Object Management Group

OO Object oriented

PDR Preliminary Design Review

PIM Platform Independent Model

Pro/EPro/ENGINEER

PSM Platform Specific Model

QVT Query/View/Transformation

RFP Request for Proposal

ROI Return On Investment

RTW Mathworks Real Time Workshop

SSCI Systems and Software Consortium

Simulink/Stateflow Product family for model-based control
system produced by The Mathworks

SCR Software Cost Reduction

SDD Software Design Document

SOAP A protocol for exchanging XML-based messages –

originally stood for Simple Object Access Protocol

Software Factory Term used by Microsoft

SQL Structured Query Language

SRS Software Requirement Specification

SysML System Modeling Language

SystemC IEEE Standard 1666

UML Unified Modeling Language

XMI XML Metadata Interchange

XML eXtensible Markup Language

xUMLExecutable UML

Unix An operating system with trademark held by Open Group

VHDLVerilog Hardware Description Language

VGS T-VEC Vector Generation System

VxWorks Operating system owned by WindRiver

32Copyright © 2010, T-VEC Technologies, Inc.

Trademarks

• OMG®, MDA®, UML®, MOF®, XMI®, SysML™, BPML™ are registered trademarks or trademarks of the Object
Management Group.

• IBM™ is a trademark of the IBM Corporation

• Java™ and J2EE™ are trademark of SUN Microsystems

• XML™ is a trademark of W3C

• BridgePoint is a registered trademark of Mentor Graphics.

• Java is trademarked by Sun Microsystems, Inc.

• MATRIXx is a registered trademark of National Instruments.

• Real-time Studio Professional is a registered trademark of ARTiSAN Software Tools, Inc.

• Rhapsody is a registered trademark of Telelogic/IBM.

• Rose XDE is a registered trademark of IBM.

• SCADE is copyrighted to Esterel Technologies.

• Simulink is a registered trademark of The MathWorks.

• Stateflow is a registered trademark of The MathWorks.

• Statemate is a registered trademark of Telelogic/IBM.

• T-VEC is a registered trademark of T-VEC Technologies, Inc.

• UNIX is a registered trademark of The Open Group.

• VxWorks is a registered trademark of Wind River Systems, Inc.

• VectorCAST is a trademark of Vector Software.

• Windows is a registered trademark of Microsoft Corporation in the United States and other countries.

• All other trademarks belong to their respective organizations.

