
REDUCING COST OF HIGH INTEGRITY SYSTEMS THROUGH MODEL-
BASED TESTING

Robert D. Busser, Mark R. Blackburn, Aaron M. Nauman, Travis R. Morgan
Software Productivity Consortium/T-VEC Technologies, Herndon, VA

Abstract

This paper describes capabilities of a model-
based analysis and automatic test generation
system. Model checking ensures that automatically
generated code is free from contradictions that are
difficult to identify manually in complex models. It
generates test vectors and test drivers that can
execute against model simulations or auto-
generated code, and produces test sequence vectors
for testing dynamic system behavior that support
feedback, such as integrators or time delays, which
are common in control systems. The paper briefly
describes tool qualification support, and processes
for using this model-based testing tool with
modeling and code coverage tools to produce
verification evidence that meets the FAA standards
for certification of these systems, while reducing
the verification costs by as much as 50%.

Introduction
A growing number of mission critical systems

are being developed using model-based
development systems. These systems support
complex modeling with simulation capabilities that

help modelers better understand the dynamic
aspects of the system, as well as code generation
capabilities for various environments. However,
when used in flight critical applications, there is
still a need to provide a level of independent
verification. The cost to comply with guidelines
such as the Federal Aviation Administration’s
(FAA) DO-178B can contribute from 50 to 70% of
the overall effort and cost of development.

To address this need the Test Automation
Framework (TAF) approach for model-based
analysis and test automation was developed. TAF
integrates various government and commercially
available model development and test generation
tools to support defect prevention and automated
testing of systems and software as shown in Figure
1. TAF supports modeling methods that focus on
representing requirements, like the Software Cost
Reduction (SCR) method, as well as methods that
focus on representing design information, like
Simulink® or MATRIXx, which supports control
system modeling for aircraft and automotive
systems.

Execution and
Results
Analysis

Model-based
Coverage
Analysis

Test
Generation

T-VEC Test Vector
Generation System

Test Driver
Generation

Modeling
Environment

MATRIXx
T-VEC

Tabular Modeler Simulink

Functional Tabular Control System/State Machine/Hybrids

T-VEC Graphical
User Interface

Console
Interface

Requirement-based Design-based

Requirement
Management

Code
Coverage

Figure 1. TAF Integrated Components Background

Through the use of model translation,
requirement-based or design-based models are
converted into a form where T-VEC, the test
generation component of TAF, produces tests
vectors. Test vectors include inputs as well as the
expected outputs with requirement-to-test
traceability information. T-VEC also supports test
driver generation, requirement test coverage
analysis, and test results checking and reporting.
The test driver mappings and test vectors are inputs
to the test driver generator to produce test drivers.
The test drivers are then executed against the
implemented system during test execution. TAF is
also integrated with requirement management tools,
such as DOORS to provide full traceability from a
DOORS requirement to a generated test case.
Additionally, TAF is also integrated with code
coverage-based tools such as LDRA that allows the
generated tests to be measured for code-based tests
coverage.

Background
The core capabilities of TAF were developed

in the late 1980s and proven through use in support
of FAA certifications for flight critical avionics
systems [1]. The approach supports requirement-
based test coverage mandated by the FAA with
significant life cycle cost savings [2; 3; 4].

The process and tools described in this paper
have been used for modeling and testing systems,
software integration, software unit, and
hardware/software integration functionality. It has
been applied to critical applications in medical and
aerospace, supporting automated test driver
generation in most languages (e.g., C, C++, Java,
Ada, Perl, PL/I, SQL), as well as in proprietary
languages, and test environments. The T-VEC tools
have tool qualification packages that can be used to
support FAA and FDA certifications. The
qualification packages are compliant with FAA
Software Approval Guidelines, Qualification Of
Software Tools Using RTCA/DO-178B [5].

Requirement-based Models and
Automatic Test Generation

This section briefly describes the typical
scenario for using the TAF to support requirement-
based modeling and automatic test generation. A

model is developed for a components requirements
and interfaces, and tests are generated from it. The
test cases are then automatically transformed into
test scripts (aka test drivers) for automated test
execution. Test engineers work in parallel with
requirement and design engineers to refine the
requirements and model them to support automated
test design and test execution. The following
outlines the process, as depicted in Figure 2:

1. Working from whatever requirements artifacts are
available, testers or modelers create models using
a tool based on the SCR method [6], such as the
SCRtool [7] or T-VEC Tabular Modeler (TTM).
Tables in the model represent each output,
specifying the relationship between input values
and resulting output values. Models are
automatically checked for inconsistencies. The
tester interacts with the requirements engineers or
analysts to validate the model as a complete and
correct interpretation of the requirements.

2. The tester maps the variables (inputs and outputs)
of the model to the interfaces of the system in
object mappings. The nature of these interfaces
depends on the level of testing performed. At the
system level, the interfaces may include graphical
user interface widgets, database APIs, or hardware
interfaces. At the lowest level, they can include
class interfaces or library APIs. The tester uses
these object mappings with a test driver pattern to
support automated test script generation. The tester
works with the designers to ensure the validity of
the interface mappings from model to
implementation.

3. The T-VEC tool generates a set of test vectors for
testing each (alternative) path in the model. These
test vectors include test inputs and expected test
outputs, as well as model-to-test traceability.

4. T-VEC generates the test drivers using the object
mappings and schema. A schema is created once
for each test environment. The schema defines the
algorithmic pattern to carry out the execution of
the test cases. The test driver executes in the target
or host environment. The test drivers typically are
designed as an automated test script that sets up
the test inputs enumerated in each test vector,
invokes the element under test, and captures the
results.

5. Finally, T-VEC analyzes the test results. It
compares the actual test results to the expected
results and highlights any discrepancies in a
summary report.

This conceptual process has been applied to
modeling many different types of application in
various application domains. More details on the
process can be found in “Interface-Driven, Model-
Based Test Automation,” [8].

Global init;
Forall tests
init target;
set inputs;
execute SUT;
get outputs;
store output;

endforall

Test Vector
Generator

Test Driver
Generator

TAF Model
Translator

Model

Test Environment

Tester
(Modeler)

Requirements
Engineer

Designer/
Implementer

Design
spec

Requirements
specification

Test Result
Analyzer

Test
Analysis

Test results
compared

against
expected
results

Test Script is Generated
from Translated Model
and Generated Tests

Test engineer builds
model to capture

required behavior and
logical variations of data

and control

Test driver schemas
define a pattern for

generating test scripts

Test Driver
Object

mapping

Schema

Test Driver
Object

mapping

Schema

Figure 2. Model-Based Test Automation

Automated Test Generation, Execution, and
Coverage

TAF uses the model to traverse the logical
paths through the program, determining the
locations of boundaries defined by constraints in the
model and identifying reachability problems, where
a particular thread through a model may not be
achievable in the program itself. TAF uses test
selection criteria based on domain testing and
equivalence classes represented by the model
constraints. These tests have been shown to uncover
errors not identified by manually developed tests
cases. The test vectors are used to verify the code
that implements the model and to identify three
main categories of model error:

• Mathematical error, e.g. division by a
domain that spans zero, such as +/-
1.0e+03; the division operation will be
flagged as being a potential divide-by-
zero hazard;

• Range overflow/underflow, i.e. signals
which at some point in the model have
values outside the specified bounds of
the type of that signal;

• Logical contradiction, e.g. (x > 0) & (x
< 0). Program errors often occur at
boundaries or equivalence classes,
logical points in software at which
decisions are made [9; 10; 11; 12].

T-VEC generates input test vectors and
predicts output results from the model. The tool
subsequently generates a test harness to wrap the
implementation code or interface to a system under
test. Executing the test harness verifies that the
input test vectors, when applied to the
implementation, give the predicted output. Either an
autocode generator or a programmer can provide
the tested implementation code. T-VEC can provide
test coverage measurements of the implementation
in terms meaningful to the model.

Another benefit is that the test vectors can be
exported to a dynamic test code tool, such as LDRA

Testbed, to obtain coverage statistics that are
meaningful measurements in implementation terms
(e.g., 100% modified condition decision coverage
(MC/DC) code coverage). Thus, the test vectors can
be used for unit and integration testing of the
implementation and this can also provide further
evidence to support the implementation verification.

Improved Requirements
Another unexpected benefit achieved is better

understanding of the requirements, improved
consistency, completeness, and most importantly,
early requirement defect identification and removal.
Models provide a means for stakeholders to better
understand the requirements and assist in
recognizing omissions. Tests automatically derived
from the model support requirement validation
through manual inspection or execution within
simulation or host environments.

In order to be testable, a requirement must be
complete, consistent and unambiguous. While any
potential misinterpretation of the requirement due to
incompleteness is a defect, TAF focuses on another
form of requirement defect, referred to as a
contradiction or feature interaction defect. These
types of defects arise from inconsistencies or
contradictions within requirements or between
them. Such defects can be introduced when more
than one individual develops or maintains the
requirements. Often the information necessary to
diagnose requirement contradictions spans many
pages of one or more documents. Such defects are
difficult to identify manually when requirements are
documented in informal or semi-formal manners,
such as textual documents. Although rigorous
manual inspection techniques have been developed
to minimize incompleteness and contradictions,
there are practical limits to their effectiveness.
These limits relate to human cognition and depend
on the number and experience of people involved.
TAF supports more thorough requirement
testability analysis, allowing developers to
iteratively refine and clarify models until they are
free of defects.

Several companies, as described below, have
recognized how defect discovery using model-
based test automation is both more effective and
more efficient than using only manual inspection
methods. One pilot study, conducted by a company,

comparing formal Fagan inspections with TAF
requirement verification, revealed that Fagan
inspections uncovered 33 defects. In comparison,
TAF uncovered all 33 of the Fagan inspection
defects plus 56 more. Attempting to repeat the
Fagan inspection did not improve its results. The
improved defect detection of TAF prevented nearly
two-thirds more defects from entering the rest of the
development lifecycle.

Rockwell Collins had similar results when they
applied TAF to a Flight Guidance System (FGS) for
a General Aviation class aircraft [13]. As reflected
in Figure 3, the FGS was first specified by hand
using the Consortium Requirement Engineering
Method (CoRE). It was then inspected, and about a
year later it entered into a tool supporting the SCR
method provided by the Naval Research Laboratory
(NRL). Despite careful review and correction of 33
errors in the CoRE model, the SCRtool’s analysis
capabilities revealed an additional 27 errors.
Statezni later used an early TAF translator and the
T-VEC toolset to analyze the SCR model, generate
test vectors and test drivers [3]. The test drivers
were executed against a java implementation of the
FGS requirements and revealed six errors. Offutt
applied his tool to the FGS model and found two
errors [14]. The latest TAF toolset, described in this
paper, identified 25 errors more than the original 27
errors.

Analysis
Technique
/Tool

FGS
Textual

Requirements
1995

CoRE
Text

Model

Inspections

33

1997

27

U
ni

qu
e

D
ef

ec
ts

SCRtool
Analysis

SCR
Model V1

1998

SCR
Model V9

6

TAF 1.0/
T-VEC

Offutt
Tool

2

2001

TAF 2.0/
T-VEC

25

1999
Figure 3. Model Evolution and Analysis

Following manual test generation practices,
defects are not identified until late in the process,
sometimes after release, when they are most
expensive to fix. By automating test generation
based on models, defects are found earlier in the

process and faster. The rate of defect discovery
increases early in the process, but quickly curtails.
Many defects are found in the requirements phase,
before they propagate to later development phases.
Defect prevention is most effective during the
requirements phase when it costs two orders of
magnitude less than after the coding process.

Figure 4 represents the conceptual differences
between manual and automatic test generation. The
existing process of discovering and eliminating
software defects is represented by the curve labeled
“Old” while the effects of early defect discovery
aided by automation is illustrated by the trend curve
labeled “New.” Industrial applications have
demonstrated that TAF directly supports early
defect identification and defect prevention through
the use of requirement testability analysis [4].

New

Defect
Prevention

Time

R
at

e
of

 D
is

co
ve

ry

Defects

100X Decrease in Cost of Removing Defects

Old

Requirements Design &
Build

Release
to Test

Release
to Field

Source: Safford, Software Technology Conference, 2000.

Late Defect
Discovery Results in
Significant Rework

Figure 4. Early Defect Identification

Defect Analysis Concepts
Requirement clarification during model

development can uncover requirement problems
such as ambiguities and inconsistencies. However,
subtle errors or errors resulting from inherent
system complexity can hide defects in a model or
implementation. This section briefly describes
defect types and how automated model analysis
identifies them.

Defect Types
There are two types of errors: computation

errors and domain errors. As defined by Howden, a
computation error occurs when the correct path
through the program is taken, but the output is
incorrect due to faults in the computation along the
path. A domain error occurs when an incorrect
output is generated due to executing the wrong path
through a program [11]. Such errors can be
introduced in a model as a result of errors in the
requirements or during the requirement clarification
process.

Domain Error Example
The concept of a program path and its related

output computation is analogous to a requirement or
design thread of a model. A domain error for a
model thread means that there is no input set that
satisfies the model constraints. Consider the
following trivial example:

x: Integer with domain from 0 to 10

y: Integer with domain from 0 to 10

z: Integer with domain from 0 to 10

If there is a requirement that

specifies

z = 0 when

x < 3 AND

y < 4 AND

x + y > 7

x < 3 & y < 4

then

maximum value for x < 3 is 2

maximum value for y < 4 is 3

minimum value for x + y > 7 is 8

x

(10,10)

(0,0)

y

x < 3

y < 4

x + y > 7

x < 3 & y < 4

Constraint Key

x < 3x < 3

y < 4y < 4

x + y > 7 x + y > 7

x < 3 & y < 4 x < 3 & y < 4

Constraint Key

Figure 5. Example of Inconsistent Constraints

The region represented by the intersection of x
& y does not overlap the constraint region defined
by x + y > 7. The constraint expression is
contradictory and cannot be satisfied. The
contradiction results in a domain error, because the
variable z will never be assigned a value of 0
through this requirement. Thus, the requirement is
untestable. Real-world problems typically include
complex constraints that span many modules,
subsystems or components of an application. Model
problems can be hidden when constraints reference
common variables that are distributed throughout
several model subsystems as reflected in Figure 6.
In these situations it can be difficult to isolate these
types of errors through manual processes.
Automated model analysis provides a tool for
locating these errors.

Subsystem B

x < 3
Subsystem B

x < 3

Subsystem A

x < 3 & y < 4

Subsystem A

x < 3 & y < 4 x < 3 & y < 4

Subsystem Z

x + y > 7

Subsystem Z

x + y > 7 x + y > 7

Subsystem C

y < 4

Subsystem C

y < 4y < 4

Figure 6. Constraints Span Hierarchy of
Subsystems

Computational Error
Computational errors can result from various

root causes such as an expression with incorrect
variables, incorrect operators (+ instead of -),
missing or incorrect parenthesis, or incorrect
constants. Erroneous expressions can result in range
errors, either underflows or overflows for the data
type of the object. During test generation, low-
bound and high-bound values are selected for the
variables used in the computation in an attempt to
stimulate range errors that can be traced to an
expression with a defect. Blackburn provides
examples of several computational errors that result
from common errors in developing expressions for
scaled arithmetic [15].

Design-based Models and Verification
For design-based modeling approaches, the

process resembles the illustration shown in Figure
7. Simulink/Stateflow and MATRIXx are hybrid,
control system modeling and code generation tools.
In this scenario, models undergo translation and
static analysis to verify their integrity. The T-VEC
system can identify model defects, and model
checking ensures all paths through the model are
valid, which means that code generated from the
model is reachable. Without this capability, models
can be used to generate code automatically, but the
results of executing that code under certain
conditions are undefined. This capability provides
increased confidence as to the integrity of the
model. Model problems are reported to the engineer
responsible for constructing the model for
immediate correction. Once modeling is complete,
the model is used as the basis for developing tests.
Through dynamic analysis of the system, anomalies
in the model and implementation can be identified
and corrected.

Design models used for simulation and/or
automatic code generation often include input-to-
output relationships involving multiple cycles of
execution. This is due to the use of primitive
operators that have “state memory” feedback
semantics in the manner of sequential logic designs
described above (e.g., the TimeDelay block in
Simulink). These types of operators are often used
to design digital signal processing applications such
as signal frequency sensitive filters and feedback-
loop control law mechanisms for digital control
applications. Such applications are very dependent
on exhibiting a dynamic response to their input
signal values.

When an application’s design includes dynamic
response characteristics, it is often difficult to
predict the expected output value response for a
given set of input values when only considering a
single cycle’s inputs. Consequently, verifying the
correct operation of such a design is a non-trivial
task and compiling verification evidence of proper
functionality with traditional software testing
approaches can be problematic. However,
verification evidence typical of these approaches is
often required by customers and certifying
agencies, such as the FAA in the commercial
aerospace domain.

Test
Drivers

Test
Vectors

Model
Analysis &
Coverage

Test Results
Analysis

Simulink
Model

T-VEC
Specifications

Execution
Environment

Test
Outputs

Autocode
Source Code

Source Code
Created by Hand

Signal
Ranges

Model Translator
Configurations

Test Sequence
Configurations

MATLAB®/
Simulink®/
Stateflow®

Similar process for MATRIXx®

Figure 7. Simulink/MATRIXx Modeling Process

Traditional software testing approaches are
generally centered around developing and applying
suites of test cases, where each test case is
comprised of a set of input values and an expected
output value. These values are geared towards
verifying the required static response of a system.
The system under test (SUT) is initialized with the
input values and is executed from a specific start
point to specific end point in the application’s
instruction space. The actual value of one or more
output variables is extracted and compared to the
expected output values, and the results of these
comparisons determine the pass or fail status of the
test. Each such test is the examination of a single
input-to-output execution cycle, essentially one
state transition of the overall system. Tests of this
type are expected to be repeatable any number of
times in sequence – the same input values expected
to result in the same output values. However, the
use of operators with “state memory” can render
such single state transition test cases totally non-
repeatable. Each successive execution of the test
can result in a unique output result. It should be
apparent that such an approach to testing is
inadequate at best for fully verifying the time-wise

non-linear or state-machine-based characteristics
found in such models.

It is possible to test a SUT’s dynamic response
using the “test case” approach by modeling “state
memory” variables as additional input variables.
However, it can be difficult to determine what
values these “state memory” inputs should be for a
given test case because they depend directly on the
history of inputs. The complexity of the mechanism
providing such “state-memory” semantics, and the
mathematical relationships characterizing system
response in terms of inputs and this state memory,
are primarily responsible for this difficulty.

The requirements governing dynamic response
are often expressed in terms of output value
tendencies, such as rise time, over shoot, and
settling time rather than functional value mappings
between a single input value set and an associated
output value.

Requirements describing a system’s static
response can be formally expressed in terms of pre-
condition/post-condition pairs. The pre-condition
characterizes the system states under which the
post-condition’s input-values-to-output-value

mapping is required to hold. The requirements
governing a given output can be said to be
“complete” if there is at least one pre-
condition/post-condition pair describing the value
of the output in terms of input values for all points
in time for all modes of operation of the system.
They can be said to be “consistent” if there is at
most only one such pre-condition/post-condition
pair for a given output variable for any given point
in time.

A set of test cases is associated with a
complete and consistent set of pre-condition/post-
condition pairs that can be shown to produce
MC/DC-complete requirements-based tests. A suite
of such test cases, when used to drive an
implementation intended to satisfy these
requirements, provides sufficient evidence that the
implementation does indeed effectively satisfy
them, at least from a functional point of view. The
T-VEC system has demonstrated that the automatic
generation of a set of such tests can be
accomplished.

Testing a Model With Feedback Semantics
An example of a model that uses both time-

wise non-linear computational feedback elements as
well as state-machine-like elements is the Flow
Control model shown in Figures 8, 9, and 10.

The Flow Control Model design employs a
simple first-order lag filter (temperatureSensor
subsystem), applied to the temperature input data
signal In1, and a small “hysteresis” based threshold
detection state machine (flowControlLogic
subsystem). Each of the two primary subsystems
includes a TimeDelay primitive operator block.
This operator is used to retain the value of an
intermediate computation result from one cycle of
execution and provide that same value as an input
to the next cycle’s computation. The TimeDelay
block provides a generic closed-loop feedback
mechanism useful for constructing simple state
machines and also for implementing digital signal
processing algorithms such as filters and digital
control law algorithms.

The required operation of the Flow Control
model is the following:

1. The flowControlLogic state machine (Figure 9) is
required to output the value of 0 during the current
cycle if it had output a 0 during the previous cycle
and the value being output from the
temperatureSensor subsystem during the current
cycle is less than or equal to 180 degrees. When
flowControlLogic outputs a 0 during the current
cycle the flowControl system should also output
the value of 0, regardless of the specific value
being input to, and output from, the
temperatureSensor subsystem.

Figure 8 - Flow Control Model

2. The flowControlLogic state machine is required to
output the value of 1 during the current cycle if the
value output from the temperatureSensor
subsystem during the current cycle is greater than
180 degrees, no matter what value it output during
the previous cycle. While flowControlLogic
outputs the value of 1, the main flowControl
system is required to output a value based on the
value produced by temperatureSensor, after being
scaled through addition and multiplication
operations.

3. The flowControlLogic state machine is required to
output the value of 1 during the current cycle if its
previous cycle output was 1 and the value being
output from the temperatureSensor subsystem
during the current cycle is greater than or equal to
120 degrees. While flowControlLogic outputs the
value of 1, the main flowControl system is
required to output a value based on the value being
output by temperatureSensor after being scaled
through addition and multiplication operations.

4. The flowControlLogic state machine is required to
output the value of 0 during the current cycle if its
previous cycle output was 1 and the current value
being output from the temperatureSensor
subsystem during the current cycle is below 120
degrees. This results in the main flowControl
system outputting the value of 0 during the current

cycle, regardless of the specific value being output
by temperatureSensor.

5. The temperatureSensor subsystem block (Figure
10) is required to provide simple first order
filtering. If the filtered value of temperature is
between the saturation limits of –100.0 to 300.0
degrees, the output is required to be equal to a
“filtered” temperature value. This “filtering”
results in an averaging effect, preventing spurious
“noise” spikes in the value of temperature from
being passed through to the flowControlLogic
state machine and thus causing it to trigger an
undesired state change. This effect can be seen in a
graph of the dynamic input response to a standard
step input signal in Figure 11.

6. The temperatureSensor subsystem block is
required to saturate at low bound and high bound
value limits. If the filtered value of the temperature
signal input is below –100.0 degrees,
temperatureSensor will output –100.0 degrees
(6a). If the filtered value of the temperature signal
input is above 300.0 degrees, temperatureSensor
will output 300.0 degrees (6b). (Note: in the case
of the overall Flow Control model (Figure 8), the
flowControlLogic state machine will prevent any
value of filtered temperature below 120 degrees
from ever being output from the system.)

Figure 9 – FlowControlLogic State Machine

Figure 10 - First Order Filter

From this description of the required
operational semantics of the Flow Control model, it
should be clear that the traditional black-box testing
approach that sets input values, executes the code
through one execution cycle, extracting output
values, and comparing the results, would be
inadequate. For example, the dynamic response
curve of Figure 11 clearly indicates that it takes
nearly 0.4 of a second (with a sample period of 0.1
seconds) for the output of temperatureSensor to rise
to from 0.0 to its full value of 100.0 degrees in
response to a step input signal of 100 degrees that
takes place at t=0.0 in the simulation run

Figure 11 - temperatureSensor Response to Step

Input

To verify that a given implementation of this
model correctly provides such a response to a step
input signal, one would need to test the
implementation’s response over a period of time,
(i.e., numerous cycles of execution). Consequently,

test cases that include an association between a
single set of input values and a single expected
output value cannot adequately verify such
performance. What is required is a new concept in
specification-based software test generation: test
sequence vectors (TSVs).

Informally, a TSV is a test specification that
includes all of the input values for a sequence of
execution cycles (i.e., invocations) of the system
being tested. A TSV includes values for each
independent input variable (e.g. temperature, in the
Flow Control model) for each invocation of the
model. It also contains initial condition values for
the closed-loop feedback variables used by the first
invocation in the sequence. A TSV includes
expected output values for each individual system
invocation in the sequence, as well as the final
expected output values for the overall sequence. A
TSV for a 4-step sequence of the flowRegulator
model is conceptually depicted by Figure 12. This
represents 4 sample periods of execution of the
cyclic flowRegulator model. Sequence values can
be specified explicitly or using functions, such as
step, ramp and impulse.

Process for High Integrity Systems
Depending on the software level of the system

being considered for certification, the decision flow
shown in Figure 13 may be required to provide
evidence that the model is defect free and that the
generated tests provide the required level of code
coverage. Details associated with several of these
steps are provided below.

125.0

130.0

122.0

119.0

87.49
0

117.24
87.49

120.47
117.24

119.42
120.47

Figure 12. Sequences Includes Feedback of Unit

Delay

The process is a follows:

• Construct a model in Simulink,
MATRIXx, or TTM.

• Check model for defects and iteratively
correct the model if there are defects.

• Construct the code. This can be a
manual process or supported using
automatic code generation capabilities
supported by tools like Simulink and
MATRIXx.

• Generate the tests.
• Execute the tests through instrumented

code.
• Check to ensure that the tests provide

adequate coverage (e.g., MC/DC
coverage); if adequate coverage is not
achieved, additional tests must be
generated.

• Check to ensure that all tests pass.
• Execute tests against target code.
• Check to ensure that all tests pass.
• If tests do not pass, perform test failure

analysis, and correct the code or model.

Generate
tests

ModelModel

CodeCode

Model
defect?yes

no

Test
instrumented

code
Meets test
coverage?

Test
code

yes
All tests
pass?

no

yes

All tests
pass?

yes
Success

Code
defect?

yes
no

no
Figure 13. Verification Decision Flow

Summary
A growing number of mission critical systems

are being developed using model-based
development systems. These systems support
complex modeling with simulation capabilities that
help modelers better understand the dynamic

aspects of the system, as well as code generation
capabilities for various environments. However,
when used in flight critical applications, there is
still a need to provide a level of independent
verification and the cost to comply with guidelines
such as the FAA’s DO-178B can contribute from 50

to 70% of the overall effort and cost of
development.

The paper describes how the use of model-
based development and test automation can be
effectively used in the development and verification
of systems that must meet the highest standards of
safety, reliability, and quality. It describes
capabilities of a model-based analysis and
automatic test generation system. The model
analysis identifies defects in a model. This type of
model checking ensures that automatically
generated code is free from contradictions that are
difficult to identify manually in complex
hierarchical models. It generates test vectors and
test drivers providing modified condition decision
(MCDC) level test coverage that can execute
against model simulations or auto-generated code.
It also produces test sequence vectors for testing
dynamic system behavior that support feedback that
are common in control system models. The paper
briefly describes tool qualification support, and
describes recommended processes for using this
model-based testing tool with modeling and other
independent code coverage tools to produce
verification evidence that meets the FAA standards
for certification of these systems, while reducing
the verification costs by as much as 50%.

References
[1] Blackburn, M.R., R.D. Busser, T-VEC: A Tool
for Developing Critical System. In Proceeding of
the Eleventh International Conference on Computer
Assurance, June, 1996.

[2] Statezni, David, Industrial Application of
Model-Based Testing, 16th International
Conference and Exposition on Testing Computer
Software, June 1999.

[3] Statezni, David. Test Automation Framework,
State-based and Signal Flow Examples, Twelfth
Annual Software Technology Conference, May
2000.

[4] Safford, Ed, L. Test Automation Framework,
State-based and Signal Flow Examples, Twelfth
Annual Software Technology Conference, May
2000.

[5] U.S. Department Of Transportation, Federal
Aviation Administration, Order 8110.83 -

Guidelines For The Qualification Of Software Tools
Using RTCA/DO-178B, April, 1999.

[6] Alspaugh, T.A., S.R. Faulk, K.H. Britton, R.A.
Parker, D.L. Parnas, and J.E. Shore. Software
requirements for the A-7E aircraft, Tech. Rep.
NRL/FR/5546-92-9194. Washington, D.C.: Naval
Research Lab, 1992.

[7] Heitmeyer, C., R. Jeffords, B. Labaw,
Automated Consistency Checking of Requirements
Specifications. ACM TOSEM, 5(3):231-261, 1996.

[8] Blackburn, M.R., R.D. Busser, A.M., Nauman,
Interface-Driven, Model-Based Test Automation,
CrossTalk, The Journal of Defense Software
Engineering, May 2003.

[9] Weyuker, E., B. Jeng, Analyzing Partition
Testing Strategies, IEEE Transactions on Software
Engineering, 17(7):703-711, 1991.

[10] White, L.J., E.I. Cohen, A Domain Strategy for
Computer Program Testing. IEEE Transactions on
Software Engineering, 6(3):247-257,May, 1980.

[11] Howden, W.E., Reliability of the Path Analysis
Testing Strategy, IEEE Transactions on Software
Engineering, 2(9):208-215, 1976.

[12] Zeil, S.J., Perturbation Techniques for
Detecting Domain Errors, IEEE Transactions on
Software Engineering, 15(6):737-746, 1989.

[13] Miller, S. P., Specifying the Mode Logic of a
Flight Guidance System in CoRE and SCR. Second
Workshop on Formal Methods in Software Practice
(FMSP'98), Clearwater Beach, Florida, March,
1998.

[14] Offutt, A.J., Generating Test Data From
Requirements/Specifications: Phase III Final
Report, George Mason University, November 24,
1999.

[15] Blackburn, M. R., Using Models For Test
Generation And Analysis, Digital Avionics System
Conference, October, 1998.

