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Abstract 

This paper describes capabilities of a model-
based analysis and automatic test generation 
system. Model checking ensures that automatically 
generated code is free from contradictions that are 
difficult to identify manually in complex models. It 
generates test vectors and test drivers that can 
execute against model simulations or auto-
generated code, and produces test sequence vectors 
for testing dynamic system behavior that support 
feedback, such as integrators or time delays, which 
are common in control systems. The paper briefly 
describes tool qualification support, and processes 
for using this model-based testing tool with 
modeling and code coverage tools to produce 
verification evidence that meets the FAA standards 
for certification of these systems, while reducing 
the verification costs by as much as 50%. 

Introduction 
A growing number of mission critical systems 

are being developed using model-based 
development systems. These systems support 
complex modeling with simulation capabilities that 

help modelers better understand the dynamic 
aspects of the system, as well as code generation 
capabilities for various environments. However, 
when used in flight critical applications, there is 
still a need to provide a level of independent 
verification. The cost to comply with guidelines 
such as the Federal Aviation Administration’s 
(FAA) DO-178B can contribute from 50 to 70% of 
the overall effort and cost of development. 

To address this need the Test Automation 
Framework (TAF) approach for model-based 
analysis and test automation was developed. TAF 
integrates various government and commercially 
available model development and test generation 
tools to support defect prevention and automated 
testing of systems and software as shown in Figure 
1. TAF supports modeling methods that focus on 
representing requirements, like the Software Cost 
Reduction (SCR) method, as well as methods that 
focus on representing design information, like 
Simulink® or MATRIXx, which supports control 
system modeling for aircraft and automotive 
systems. 
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Figure 1. TAF Integrated Components Background



Through the use of model translation, 
requirement-based or design-based models are 
converted into a form where T-VEC, the test 
generation component of TAF, produces tests 
vectors. Test vectors include inputs as well as the 
expected outputs with requirement-to-test 
traceability information. T-VEC also supports test 
driver generation, requirement test coverage 
analysis, and test results checking and reporting. 
The test driver mappings and test vectors are inputs 
to the test driver generator to produce test drivers. 
The test drivers are then executed against the 
implemented system during test execution. TAF is 
also integrated with requirement management tools, 
such as DOORS to provide full traceability from a 
DOORS requirement to a generated test case. 
Additionally, TAF is also integrated with code 
coverage-based tools such as LDRA that allows the 
generated tests to be measured for code-based tests 
coverage. 

Background 
The core capabilities of TAF were developed 

in the late 1980s and proven through use in support 
of FAA certifications for flight critical avionics 
systems [1]. The approach supports requirement-
based test coverage mandated by the FAA with 
significant life cycle cost savings [2; 3; 4]. 

The process and tools described in this paper 
have been used for modeling and testing systems, 
software integration, software unit, and 
hardware/software integration functionality. It has 
been applied to critical applications in medical and 
aerospace, supporting automated test driver 
generation in most languages (e.g., C, C++, Java, 
Ada, Perl, PL/I, SQL), as well as in proprietary 
languages, and test environments. The T-VEC tools 
have tool qualification packages that can be used to 
support FAA and FDA certifications. The 
qualification packages are compliant with FAA 
Software Approval Guidelines, Qualification Of 
Software Tools Using RTCA/DO-178B [5]. 

Requirement-based Models and 
Automatic Test Generation 

This section briefly describes the typical 
scenario for using the TAF to support requirement-
based modeling and automatic test generation. A 

model is developed for a components requirements 
and interfaces, and tests are generated from it. The 
test cases are then automatically transformed into 
test scripts (aka test drivers) for automated test 
execution. Test engineers work in parallel with 
requirement and design engineers to refine the 
requirements and model them to support automated 
test design and test execution. The following 
outlines the process, as depicted in Figure 2:  

1. Working from whatever requirements artifacts are 
available, testers or modelers create models using 
a tool based on the SCR method [6], such as the 
SCRtool [7] or T-VEC Tabular Modeler (TTM). 
Tables in the model represent each output, 
specifying the relationship between input values 
and resulting output values. Models are 
automatically checked for inconsistencies. The 
tester interacts with the requirements engineers or 
analysts to validate the model as a complete and 
correct interpretation of the requirements. 

2. The tester maps the variables (inputs and outputs) 
of the model to the interfaces of the system in 
object mappings. The nature of these interfaces 
depends on the level of testing performed. At the 
system level, the interfaces may include graphical 
user interface widgets, database APIs, or hardware 
interfaces. At the lowest level, they can include 
class interfaces or library APIs. The tester uses 
these object mappings with a test driver pattern to 
support automated test script generation. The tester 
works with the designers to ensure the validity of 
the interface mappings from model to 
implementation. 

3. The T-VEC tool generates a set of test vectors for 
testing each (alternative) path in the model. These 
test vectors include test inputs and expected test 
outputs, as well as model-to-test traceability. 

4. T-VEC generates the test drivers using the object 
mappings and schema. A schema is created once 
for each test environment. The schema defines the 
algorithmic pattern to carry out the execution of 
the test cases. The test driver executes in the target 
or host environment. The test drivers typically are 
designed as an automated test script that sets up 
the test inputs enumerated in each test vector, 
invokes the element under test, and captures the 
results.  



5. Finally, T-VEC analyzes the test results. It 
compares the actual test results to the expected 
results and highlights any discrepancies in a 
summary report. 

This conceptual process has been applied to 
modeling many different types of application in 
various application domains. More details on the 
process can be found in “Interface-Driven, Model-
Based Test Automation,” [8].

Global init;
Forall tests
init target;
set inputs;
execute SUT;
get outputs;
store output;

endforall
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Figure 2. Model-Based Test Automation 

Automated Test Generation, Execution, and 
Coverage 

TAF uses the model to traverse the logical 
paths through the program, determining the 
locations of boundaries defined by constraints in the 
model and identifying reachability problems, where 
a particular thread through a model may not be 
achievable in the program itself. TAF uses test 
selection criteria based on domain testing and 
equivalence classes represented by the model 
constraints. These tests have been shown to uncover 
errors not identified by manually developed tests 
cases. The test vectors are used to verify the code 
that implements the model and to identify three 
main categories of model error: 

• Mathematical error, e.g. division by a 
domain that spans zero, such as +/-
1.0e+03; the division operation will be 
flagged as being a potential divide-by-
zero hazard; 

• Range overflow/underflow, i.e. signals 
which at some point in the model have 
values outside the specified bounds of 
the type of that signal;  

• Logical contradiction, e.g. (x > 0) & (x 
< 0). Program errors often occur at 
boundaries or equivalence classes, 
logical points in software at which 
decisions are made [9; 10; 11; 12]. 

T-VEC generates input test vectors and 
predicts output results from the model. The tool 
subsequently generates a test harness to wrap the 
implementation code or interface to a system under 
test. Executing the test harness verifies that the 
input test vectors, when applied to the 
implementation, give the predicted output. Either an 
autocode generator or a programmer can provide 
the tested implementation code. T-VEC can provide 
test coverage measurements of the implementation 
in terms meaningful to the model. 

Another benefit is that the test vectors can be 
exported to a dynamic test code tool, such as LDRA 



Testbed, to obtain coverage statistics that are 
meaningful measurements in implementation terms 
(e.g., 100% modified condition decision coverage 
(MC/DC) code coverage). Thus, the test vectors can 
be used for unit and integration testing of the 
implementation and this can also provide further 
evidence to support the implementation verification. 

Improved Requirements 
Another unexpected benefit achieved is better 

understanding of the requirements, improved 
consistency, completeness, and most importantly, 
early requirement defect identification and removal. 
Models provide a means for stakeholders to better 
understand the requirements and assist in 
recognizing omissions. Tests automatically derived 
from the model support requirement validation 
through manual inspection or execution within 
simulation or host environments. 

In order to be testable, a requirement must be 
complete, consistent and unambiguous. While any 
potential misinterpretation of the requirement due to 
incompleteness is a defect, TAF focuses on another 
form of requirement defect, referred to as a 
contradiction or feature interaction defect. These 
types of defects arise from inconsistencies or 
contradictions within requirements or between 
them. Such defects can be introduced when more 
than one individual develops or maintains the 
requirements. Often the information necessary to 
diagnose requirement contradictions spans many 
pages of one or more documents. Such defects are 
difficult to identify manually when requirements are 
documented in informal or semi-formal manners, 
such as textual documents. Although rigorous 
manual inspection techniques have been developed 
to minimize incompleteness and contradictions, 
there are practical limits to their effectiveness. 
These limits relate to human cognition and depend 
on the number and experience of people involved. 
TAF supports more thorough requirement 
testability analysis, allowing developers to 
iteratively refine and clarify models until they are 
free of defects. 

Several companies, as described below, have 
recognized how defect discovery using model-
based test automation is both more effective and 
more efficient than using only manual inspection 
methods. One pilot study, conducted by a company, 

comparing formal Fagan inspections with TAF 
requirement verification, revealed that Fagan 
inspections uncovered 33 defects. In comparison, 
TAF uncovered all 33 of the Fagan inspection 
defects plus 56 more. Attempting to repeat the 
Fagan inspection did not improve its results. The 
improved defect detection of TAF prevented nearly 
two-thirds more defects from entering the rest of the 
development lifecycle. 

Rockwell Collins had similar results when they 
applied TAF to a Flight Guidance System (FGS) for 
a General Aviation class aircraft [13]. As reflected 
in Figure 3, the FGS was first specified by hand 
using the Consortium Requirement Engineering 
Method (CoRE). It was then inspected, and about a 
year later it entered into a tool supporting the SCR 
method provided by the Naval Research Laboratory 
(NRL). Despite careful review and correction of 33 
errors in the CoRE model, the SCRtool’s analysis 
capabilities revealed an additional 27 errors. 
Statezni later used an early TAF translator and the 
T-VEC toolset to analyze the SCR model, generate 
test vectors and test drivers [3]. The test drivers 
were executed against a java implementation of the 
FGS requirements and revealed six errors. Offutt 
applied his tool to the FGS model and found two 
errors [14]. The latest TAF toolset, described in this 
paper, identified 25 errors more than the original 27 
errors. 
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Figure 3. Model Evolution and Analysis 

Following manual test generation practices, 
defects are not identified until late in the process, 
sometimes after release, when they are most 
expensive to fix. By automating test generation 
based on models, defects are found earlier in the 



process and faster. The rate of defect discovery 
increases early in the process, but quickly curtails. 
Many defects are found in the requirements phase, 
before they propagate to later development phases. 
Defect prevention is most effective during the 
requirements phase when it costs two orders of 
magnitude less than after the coding process. 

Figure 4 represents the conceptual differences 
between manual and automatic test generation. The 
existing process of discovering and eliminating 
software defects is represented by the curve labeled 
“Old” while the effects of early defect discovery 
aided by automation is illustrated by the trend curve 
labeled “New.” Industrial applications have 
demonstrated that TAF directly supports early 
defect identification and defect prevention through 
the use of requirement testability analysis [4]. 
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Figure 4. Early Defect Identification 

Defect Analysis Concepts 
Requirement clarification during model 

development can uncover requirement problems 
such as ambiguities and inconsistencies. However, 
subtle errors or errors resulting from inherent 
system complexity can hide defects in a model or 
implementation. This section briefly describes 
defect types and how automated model analysis 
identifies them.  

Defect Types 
There are two types of errors: computation 

errors and domain errors. As defined by Howden, a 
computation error occurs when the correct path 
through the program is taken, but the output is 
incorrect due to faults in the computation along the 
path. A domain error occurs when an incorrect 
output is generated due to executing the wrong path 
through a program [11]. Such errors can be 
introduced in a model as a result of errors in the 
requirements or during the requirement clarification 
process.  

Domain Error Example 
The concept of a program path and its related 

output computation is analogous to a requirement or 
design thread of a model. A domain error for a 
model thread means that there is no input set that 
satisfies the model constraints. Consider the 
following trivial example:

x: Integer with domain from 0 to 10

y: Integer with domain from 0 to 10

z: Integer with domain from 0 to 10

If there is a requirement that 

specifies 

z = 0 when

x < 3 AND 

y < 4 AND 

x + y > 7

x < 3 & y < 4

then 

maximum value for x < 3 is 2 

maximum value for y < 4 is 3

minimum value for x + y > 7 is 8

x

(10,10)

(0,0)

y

x < 3

y < 4

x + y > 7  

x < 3 & y < 4            

Constraint Key

x < 3x < 3

y < 4y < 4

x + y > 7  x + y > 7  

x < 3 & y < 4            x < 3 & y < 4            

Constraint Key

 
Figure 5. Example of Inconsistent Constraints



The region represented by the intersection of x 
& y does not overlap the constraint region defined 
by x + y > 7. The constraint expression is 
contradictory and cannot be satisfied. The 
contradiction results in a domain error, because the 
variable z will never be assigned a value of 0 
through this requirement. Thus, the requirement is 
untestable. Real-world problems typically include 
complex constraints that span many modules, 
subsystems or components of an application. Model 
problems can be hidden when constraints reference 
common variables that are distributed throughout 
several model subsystems as reflected in Figure 6. 
In these situations it can be difficult to isolate these 
types of errors through manual processes. 
Automated model analysis provides a tool for 
locating these errors. 
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Figure 6. Constraints Span Hierarchy of 
Subsystems 

Computational Error 
Computational errors can result from various 

root causes such as an expression with incorrect 
variables, incorrect operators (+ instead of -), 
missing or incorrect parenthesis, or incorrect 
constants. Erroneous expressions can result in range 
errors, either underflows or overflows for the data 
type of the object. During test generation, low-
bound and high-bound values are selected for the 
variables used in the computation in an attempt to 
stimulate range errors that can be traced to an 
expression with a defect. Blackburn provides 
examples of several computational errors that result 
from common errors in developing expressions for 
scaled arithmetic [15]. 

Design-based Models and Verification 
For design-based modeling approaches, the 

process resembles the illustration shown in Figure 
7. Simulink/Stateflow and MATRIXx are hybrid, 
control system modeling and code generation tools. 
In this scenario, models undergo translation and 
static analysis to verify their integrity. The T-VEC 
system can identify model defects, and model 
checking ensures all paths through the model are 
valid, which means that code generated from the 
model is reachable. Without this capability, models 
can be used to generate code automatically, but the 
results of executing that code under certain 
conditions are undefined. This capability provides 
increased confidence as to the integrity of the 
model. Model problems are reported to the engineer 
responsible for constructing the model for 
immediate correction. Once modeling is complete, 
the model is used as the basis for developing tests. 
Through dynamic analysis of the system, anomalies 
in the model and implementation can be identified 
and corrected. 

Design models used for simulation and/or 
automatic code generation often include input-to-
output relationships involving multiple cycles of 
execution. This is due to the use of primitive 
operators that have “state memory” feedback 
semantics in the manner of sequential logic designs 
described above (e.g., the TimeDelay block in 
Simulink). These types of operators are often used 
to design digital signal processing applications such 
as signal frequency sensitive filters and feedback-
loop control law mechanisms for digital control 
applications. Such applications are very dependent 
on exhibiting a dynamic response to their input 
signal values. 

When an application’s design includes dynamic 
response characteristics, it is often difficult to 
predict the expected output value response for a 
given set of input values when only considering a 
single cycle’s inputs. Consequently, verifying the 
correct operation of such a design is a non-trivial 
task and compiling verification evidence of proper 
functionality with traditional software testing 
approaches can be problematic. However, 
verification evidence typical of these approaches is 
often required by customers and certifying 
agencies, such as the FAA in the commercial 
aerospace domain. 
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Figure 7. Simulink/MATRIXx Modeling Process 

Traditional software testing approaches are 
generally centered around developing and applying 
suites of test cases, where each test case is 
comprised of a set of input values and an expected 
output value. These values are geared towards 
verifying the required static response of a system. 
The system under test (SUT) is initialized with the 
input values and is executed from a specific start 
point to specific end point in the application’s 
instruction space. The actual value of one or more 
output variables is extracted and compared to the 
expected output values, and the results of these 
comparisons determine the pass or fail status of the 
test. Each such test is the examination of a single 
input-to-output execution cycle, essentially one 
state transition of the overall system. Tests of this 
type are expected to be repeatable any number of 
times in sequence – the same input values expected 
to result in the same output values. However, the 
use of operators with “state memory” can render 
such single state transition test cases totally non-
repeatable. Each successive execution of the test 
can result in a unique output result. It should be 
apparent that such an approach to testing is 
inadequate at best for fully verifying the time-wise 

non-linear or state-machine-based characteristics 
found in such models.  

It is possible to test a SUT’s dynamic response 
using the “test case” approach by modeling “state 
memory” variables as additional input variables. 
However, it can be difficult to determine what 
values these “state memory” inputs should be for a 
given test case because they depend directly on the 
history of inputs. The complexity of the mechanism 
providing such “state-memory” semantics, and the 
mathematical relationships characterizing system 
response in terms of inputs and this state memory, 
are primarily responsible for this difficulty.  

The requirements governing dynamic response 
are often expressed in terms of output value 
tendencies, such as rise time, over shoot, and 
settling time rather than functional value mappings 
between a single input value set and an associated 
output value.  

Requirements describing a system’s static 
response can be formally expressed in terms of pre-
condition/post-condition pairs. The pre-condition 
characterizes the system states under which the 
post-condition’s input-values-to-output-value 



mapping is required to hold. The requirements 
governing a given output can be said to be 
“complete” if there is at least one pre-
condition/post-condition pair describing the value 
of the output in terms of input values for all points 
in time for all modes of operation of the system. 
They can be said to be “consistent” if there is at 
most only one such pre-condition/post-condition 
pair for a given output variable for any given point 
in time.  

A set of test cases is associated with a 
complete and consistent set of pre-condition/post-
condition pairs that can be shown to produce 
MC/DC-complete requirements-based tests. A suite 
of such test cases, when used to drive an 
implementation intended to satisfy these 
requirements, provides sufficient evidence that the 
implementation does indeed effectively satisfy 
them, at least from a functional point of view. The 
T-VEC system has demonstrated that the automatic 
generation of a set of such tests can be 
accomplished.  

Testing a Model With Feedback Semantics 
An example of a model that uses both time-

wise non-linear computational feedback elements as 
well as state-machine-like elements is the Flow 
Control model shown in Figures 8, 9, and 10.  

The Flow Control Model design employs a 
simple first-order lag filter (temperatureSensor 
subsystem), applied to the temperature input data 
signal In1, and a small “hysteresis” based threshold 
detection state machine (flowControlLogic 
subsystem). Each of the two primary subsystems 
includes a TimeDelay primitive operator block. 
This operator is used to retain the value of an 
intermediate computation result from one cycle of 
execution and provide that same value as an input 
to the next cycle’s computation. The TimeDelay 
block provides a generic closed-loop feedback 
mechanism useful for constructing simple state 
machines and also for implementing digital signal 
processing algorithms such as filters and digital 
control law algorithms.  

The required operation of the Flow Control 
model is the following: 

1. The flowControlLogic state machine (Figure 9) is 
required to output the value of 0 during the current 
cycle if it had output a 0 during the previous cycle 
and the value being output from the 
temperatureSensor subsystem during the current 
cycle is less than or equal to 180 degrees. When 
flowControlLogic outputs a 0 during the current 
cycle the flowControl system should also output 
the value of 0, regardless of the specific value 
being input to, and output from, the 
temperatureSensor subsystem. 

 
Figure 8 - Flow Control Model



2. The flowControlLogic state machine is required to 
output the value of 1 during the current cycle if the 
value output from the temperatureSensor 
subsystem during the current cycle is greater than 
180 degrees, no matter what value it output during 
the previous cycle. While flowControlLogic 
outputs the value of 1, the main flowControl 
system is required to output a value based on the 
value produced by temperatureSensor, after being 
scaled through addition and multiplication 
operations. 

3. The flowControlLogic state machine is required to 
output the value of 1 during the current cycle if its 
previous cycle output was 1 and the value being 
output from the temperatureSensor subsystem 
during the current cycle is greater than or equal to 
120 degrees. While flowControlLogic outputs the 
value of 1, the main flowControl system is 
required to output a value based on the value being 
output by temperatureSensor after being scaled 
through addition and multiplication operations. 

4. The flowControlLogic state machine is required to 
output the value of 0 during the current cycle if its 
previous cycle output was 1 and the current value 
being output from the temperatureSensor 
subsystem during the current cycle is below 120 
degrees. This results in the main flowControl 
system outputting the value of 0 during the current 

cycle, regardless of the specific value being output 
by temperatureSensor. 

5. The temperatureSensor subsystem block (Figure 
10) is required to provide simple first order 
filtering. If the filtered value of temperature is 
between the saturation limits of –100.0 to 300.0 
degrees, the output is required to be equal to a 
“filtered” temperature value. This “filtering” 
results in an averaging effect, preventing spurious 
“noise” spikes in the value of temperature from 
being passed through to the flowControlLogic 
state machine and thus causing it to trigger an 
undesired state change. This effect can be seen in a 
graph of the dynamic input response to a standard 
step input signal in Figure 11. 

6. The temperatureSensor subsystem block is 
required to saturate at low bound and high bound 
value limits. If the filtered value of the temperature 
signal input is below –100.0 degrees, 
temperatureSensor will output –100.0 degrees 
(6a). If the filtered value of the temperature signal 
input is above 300.0 degrees, temperatureSensor 
will output 300.0 degrees (6b). (Note: in the case 
of the overall Flow Control model (Figure 8), the 
flowControlLogic state machine will prevent any 
value of filtered temperature below 120 degrees 
from ever being output from the system.)  

 
Figure 9 – FlowControlLogic State Machine 



 
Figure 10 - First Order Filter

From this description of the required 
operational semantics of the Flow Control model, it 
should be clear that the traditional black-box testing 
approach that sets input values, executes the code 
through one execution cycle, extracting output 
values, and comparing the results, would be 
inadequate. For example, the dynamic response 
curve of Figure 11 clearly indicates that it takes 
nearly 0.4 of a second (with a sample period of 0.1 
seconds) for the output of temperatureSensor to rise 
to from 0.0 to its full value of 100.0 degrees in 
response to a step input signal of 100 degrees that 
takes place at t=0.0 in the simulation run 

 
Figure 11 - temperatureSensor Response to Step 

Input 

To verify that a given implementation of this 
model correctly provides such a response to a step 
input signal, one would need to test the 
implementation’s response over a period of time, 
(i.e., numerous cycles of execution). Consequently, 

test cases that include an association between a 
single set of input values and a single expected 
output value cannot adequately verify such 
performance. What is required is a new concept in 
specification-based software test generation: test 
sequence vectors (TSVs).  

Informally, a TSV is a test specification that 
includes all of the input values for a sequence of 
execution cycles (i.e., invocations) of the system 
being tested. A TSV includes values for each 
independent input variable (e.g. temperature, in the 
Flow Control model) for each invocation of the 
model. It also contains initial condition values for 
the closed-loop feedback variables used by the first 
invocation in the sequence. A TSV includes 
expected output values for each individual system 
invocation in the sequence, as well as the final 
expected output values for the overall sequence. A 
TSV for a 4-step sequence of the flowRegulator 
model is conceptually depicted by Figure 12. This 
represents 4 sample periods of execution of the 
cyclic flowRegulator model. Sequence values can 
be specified explicitly or using functions, such as 
step, ramp and impulse. 

Process for High Integrity Systems 
Depending on the software level of the system 

being considered for certification, the decision flow 
shown in Figure 13 may be required to provide 
evidence that the model is defect free and that the 
generated tests provide the required level of code 
coverage. Details associated with several of these 
steps are provided below. 
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The process is a follows: 

• Construct a model in Simulink, 
MATRIXx, or TTM. 

• Check model for defects and iteratively 
correct the model if there are defects. 

• Construct the code. This can be a 
manual process or supported using 
automatic code generation capabilities 
supported by tools like Simulink and 
MATRIXx. 

• Generate the tests. 
• Execute the tests through instrumented 

code.  
• Check to ensure that the tests provide 

adequate coverage (e.g., MC/DC 
coverage); if adequate coverage is not 
achieved, additional tests must be 
generated. 

• Check to ensure that all tests pass. 
• Execute tests against target code. 
• Check to ensure that all tests pass. 
• If tests do not pass, perform test failure 

analysis, and correct the code or model.

Generate
tests

ModelModel

CodeCode

Model
defect?yes

no

Test
instrumented

code
Meets test
coverage?

Test
code

yes
All tests
pass?
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yes

All tests
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Code
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Figure 13. Verification Decision Flow

Summary 
A growing number of mission critical systems 

are being developed using model-based 
development systems. These systems support 
complex modeling with simulation capabilities that 
help modelers better understand the dynamic 

aspects of the system, as well as code generation 
capabilities for various environments. However, 
when used in flight critical applications, there is 
still a need to provide a level of independent 
verification and the cost to comply with guidelines 
such as the FAA’s DO-178B can contribute from 50 



to 70% of the overall effort and cost of 
development. 

The paper describes how the use of model-
based development and test automation can be 
effectively used in the development and verification 
of systems that must meet the highest standards of 
safety, reliability, and quality. It describes 
capabilities of a model-based analysis and 
automatic test generation system. The model 
analysis identifies defects in a model. This type of 
model checking ensures that automatically 
generated code is free from contradictions that are 
difficult to identify manually in complex 
hierarchical models. It generates test vectors and 
test drivers providing modified condition decision 
(MCDC) level test coverage that can execute 
against model simulations or auto-generated code. 
It also produces test sequence vectors for testing 
dynamic system behavior that support feedback that 
are common in control system models. The paper 
briefly describes tool qualification support, and 
describes recommended processes for using this 
model-based testing tool with modeling and other 
independent code coverage tools to produce 
verification evidence that meets the FAA standards 
for certification of these systems, while reducing 
the verification costs by as much as 50%. 
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