Mars Polar Lander Fault Identification Using M odel-based Testing

Mark Blackburn

Robert Busser

Aaron Nauman

Software Productivity Consortium/T-VEC

2214 Rock Hill Road, Herndon, VA 20170

Abstract

This paper describes the application of the Test
Automation Framework (TAF) on the Mars Polar Lander
(MPL) software. The premature shutdown of the descent
engine on the MPL spacecraft is believed to be the most
likely cause for the mission failure. It is believed that the
engine shutdown occurred when the three landing legs
were extended into their deployed position. This event
created an unanticipated transient touchdown indication
from the legs, causing the software to inadvertently
shutdown the descent engines prior to reaching the
surface of Mars. This spurious indication should have
been ignored by the Touchdown Monitor (TDM) software,
but due to a design flaw, was actually “latched,” thus
causing the premature engine shutdown. The TAF
approach was used to model the TDM software
requirements. The associated TAF tools generated tests
that identified a potential TDM fault.

1. Introduction

The Mars Polar Lander (MPL) was launched on January 3,
1999 and log on
December 3, 1999.

A premature
shutdown of the
MPL descent

engine is believed
to be the most likely
cause for the
mission falure. It is
believed that the - :
engine shutdown occurred because of a failure to properly
process an eectricd transent when the three landing legs
were extended into their deployed position. This event created
an incorrect touchdown indication from the legs, causing the
software to inadvertently shutdown the descent engines prior
to reaching the surface of Mars. This spurious indication
should have been ignored by the Touchdown Monitor
software, but due to a design flaw, was actudly “latched,”
thus causing the premature engine shutdown. Lockheed
Martin Space Sysems Company Adronautics Operations
(LMAO - Denver) was responsible for the development and
verification of the MPL spacecraft and on board software.
The Software Productivity Consortium (Consortium)
members have requested greater support in the area of
verification and test automation. To address the need the

Robert Knickerbocker

Richard Kasuda

Lockheed Martin Space Systems Company
Astronautics Operations

P.O. Box 179, Denver, CO 80201-0179

Consortium developed capabilities referred to as the Test
Automation Framework (TAF). TAF integrates various
government and commercially available model development
and test generation tools to support defect prevention and
autometed testing of systems and software. The Consortium
helps members with technology transfer through pilot
projects. As aresult LMAO requested that the TAF team use
TAF to detect the error inthe TDM system.

The objective was to demongrate the capability of the
TAF approach to detect a deeply hidden problem in the
implementation of an MPL component called the Lander
Touchdown Monitor (TDM). LMAO sent the requirements
and the code to the Consortium TAF team, but did not
disclose the source or location of the problem. At that time the
TAF team was not aware of the details of the TDM problem.
This paper provides an overview of the results of applying the
TAFto the TDM problem.

11 Resultssummary

The TAF team developed a model for the TDM system
from the requirements supplied by LMAO using the Software
Cog Reduction (SCR) tool [HIL96]. The TAF team spent
about 12 staff hours modding the requirements and building
the test driver schema to support test injection into the TDM
C code module supplied by the LMAO team. The TDM
module is approximately 50 source lines of code. The team
generated test vectors and test drivers using the T-VEC
system. The tests were injected into the TDM code module in
an attempt to uncover the fault. The problem was not
identified.

The TAF team flew to LMAO (Denver) to present their
results on the following week. The developer of the code,
aong with the TDM team and other related LMAO V&V
daff, were present a the presentation. The TAF team
explained the model, and executed the generated tests against
the code. The TAF team observed that the TDM code used
dtate data that was managed and accessed through severa
code entry points, and the TDM developer confirmed this.
The TAF team modified the test schemato simulate multiple
cals to the entry points much like that of the real-time multi-
tasking executive of the TDM software. These additiona calls
would propagate the state data. New test drivers were
autometicaly generated from the origind model, and the
modified test drivers were executed exposing the fault.

The T-VEC test generation system uses a test selection
heuristic based on domain testing theory [WC80] where test
values are sdlected for each constraint. Domain testing theory
is based on the intuitive idea that faults in implementation are

more likdy to be found by test points chosen near
appropriately defined program input and output domain
boundaries [TVK90]. The test vectors stimulating the failures
were associated with the condraint that represents the
Stuation where a landing leg sensor indicates touchdown for
two consecutive reads. The test driver generation mechanism
provides the flexibility to smulate the periodic cals of the
TDM real-time executive. The combination of the test vector
generation, which selects inputs for the criticd congtraint, and
test driver generation, which emulates the real-time executive
provided the stimulus to initiate a test failure associated with
the probable program fault.

The results of the application suggest that the TAF
approach may have the potential to provide a systematic and
cogt-effective approach for verification. LMAO believes the
tool provides a standardized test approach and a more
thorough test capability than the manua approach. LMAO
and its customers are congdering future pilot projectsto more
fully assessthe TAF capabilities.

2. Approach and toolset

21 Processoverview

The conceptud process flow that relates the artifacts to the
toolsisshown in Figure 1. The TDM specification is modeled
using the SCRtool. An SCR-to-T-VEC trandator trandates
the SCR modd to a T-VEC test gpecification. T-VEC
autometically generates test vectors (i.e., test cases with test

input vaues, expected output values and traceshility
information) and requirement-to-test coverage metrics. T-
VEC automaticaly generates test drivers to execute tests
againg the TDM code compiled in a Microsoft C++
development environment running on a Windows NT
platform. The execution of the test driver results in actud
outputs that are then compared with the expected outputs, and
the results report is produced. SCR concepts and tool

22 SCRoonceptsand tool

SCR is a table-based modding approach that modeds
system and software requirements. SCR represents system
inputs as monitor ed variables, system outputs as controlled
variables and intermediate values as term variables.
Variables are defined as primitive types (e.g., Integers, Float,
Boolean, Enumeration) or as user-defined types. Behavior is
defined usng a tabular approach relating four model
elements: modes, conditions, events, and terms. The required
functionality or behavior of the system is defined using tables
to relate monitored variablesto controlled variables. There are
three basic types of tables (with two variants):

e Condition table (with mode or modeless)
e Event table (with mode or modeless)
* Modetransition table for amode class

A mode class is a state machine, where system states are
cdled systlem modes and the trangtions of the state machine
are characterized by guarded events. A condition characterizes

Requirement Modeling Interfaces
and Clarification Data Types
Variables
e Constants
scr2tvec
: ~ Model
% Behavior = Translator
-) Condition T e
TDM Requirements Event —
State machine

SCR Modeling Tool

Test Environment

T-VEC

T-VEC
. mm gl Test Driver [—
Generator

mmmdl Test Vector
Generator

T-VEC Test Test Vectors
Specification /
MS Development
- 8 Studio for C++
NT Workstation

Test Driver Schemas
Figure 1. Processflow and artifacts

system state with an expression that evaluates to true or false.
An event occurs when any system entity changes vaue.

The SCR modeling approach permits condition, event and
mode tables to be combined. Terms and controlled variables
are functions of input variables, modes, or other terms. Their
values are defined in the mode through event or condition
tables. This allows complex relationships between monitored
and controlled variables to be described using terms with
smpler relaionships modeled in condition, event or mode
tables.

3. TDM requirementsand modd

The LMAO TDM team supplied the textual reguirements
shown in Figure 2 to the TAF Team.

31 Reguirementsanalyss

Developing SCR models requires identifying the system
monitored (input) and controlled (output) variables, and
defining the relationships between them. This process is
typicdly iterative. It involves defining the variables, data
types associated with the variables, and the tables that define
relationships between the variables. A useful guiddine for
developing SCR models is to work backwards from each

output to make the process goal-oriented. The value of each
output is defined in terms of the system inputs. Term
varidbles are introduced whenever intermediate vaues are
necessary or useful. Bresking the TDM requirement into
clauses supportsidentifying variables and relationships. Table
1 contains elaboration and clarification of the TDM
requirements to support modeling. It identifies the variables
and relations associated with each clause.
The monitored (input) variables identified in the system
can be refined into the following set:
e TD_1, TD_2, TD_3 - the current sensor value
for landing legs 1, 2, and 3 respectively
e TD_1 Last, TD_2 Last, TD_3 Last - the sensor
value for landing legs 1, 2, and 3 from the
previous cycle
e CMD_disable enable — the state of the event
generation flag — when enabled the touchdown
signal can beissued
 TDM_started — the globa variable that allows
the TDM executiveto run

@l TDM_req.itf - Microsoft Word

JEiIe Edit Wew Insert Format Tools Table ‘Window Help

37224 Touchdown Monitor

touchdown detect decision process.
372241 Inputs

372242 Processing

twao congecutive reads.

tauchdown detect.

event has occurred.

The Lander Touchdown Monitor will poll each of three touchdawn sensors at 100 Hz, and it will detect
touchdown has occurred when a single sensor indicates touchdovwn on two consecutive reads. In
arder to keep the processing load even, and the ACS processing consistent throughout EOL, the
touchdown event palling wdll hegin prior to Lander entry, but its ability to generate the touchdown
event processing will not be turned on until it is close to the surface. When the event processing is
first enabled, whichever legs indicate touchdown an twa consecutive reads will be ignared in the

a. Touchdown sensor states (3, one from each led).

a. The Lander flight sothware shall cyclically check the state of each ofthe three touchdown
sensors (one per leg) at 100 Hz during EDL.

b. The Lander flight sothware shall be able to eyclically check the touchdown event state with or
without touchdown event generation enabled. —

. LIpon enabling touchdown event generation, the Lander flight software shall attempt to detect
failed sensors by marking the sensor as bad when the sensor indicates "touchdown state” on

d. The Lander flight sofhware shall generate the landing event based on two consecutive reads
indicating touchdown from any one of the "good” touchdown sensors.

e. The Lander flight sothware shall command a shutdown of thrusters within 20 millisecaonds of

1 The Lander flight sothware shall set a sequencing glohal variahle to indicate the touchdown

9. The Lander fight software shall enable event generation only while cyclic event detection is

active. x
372243 OQutputs =
Touchdown time] =
| 3
[Page 1 Sec 1 11 At e Ln 25 col 16 | [REC|[iRE Eam e[4

Figure2. TDM requirements

Tablel. TDM

requirements

Requirement Statement/Clause

Variables Relations

100 Hz during EDL.

TDM(a) The Lander flight software shall cyclically check the
state of each of the three touchdown sensors (one per leg) at

Periodic processing controlled
in test driver

event generation enabled.

TDM(b) The Lander flight software shall be able to cyclically
check the touchdown event state with or without touchdown

TD 1, 7D_1 Last
TD 2, TD_2 Last
TD 3, TD_3 Lat

TD_Senl, TD_Sen2,
TD_Sen3

TDM(c) Upon enabling touchdown event generation, the Lander
flight software shall attempt to detect failed sensors by marking
the sensor as bad when the sensor indicates “touchdown state”

on two consecutive reads. All First_ Marked Bad
TDM(d) The Lander flight software shall generate the landing

event based on two consecutive reads indicating touchdown

from any one of the "good" touchdown sensors. All TDM_thruster

of thrusters within 20 milliseconds of touchdown detect.

TDM(e) The Lander flight software shall command a shutdown

Outside scope of code module

TDM(f) The Lander flight software shall set a sequencing gl

oba

variable to indicate the touchdown event has occurred. All TDM_thruster
CMD_disable endble |TpM event enabled,

TDM(g) The Lander flight software shall enable event TMD_Modes,

generation only while cyclic event detection is active. TDM_gtarted TDM_thruster

Although the requirements document indicates that the
output is “Touchdown time,” the key output associated with
the code is caled “TDM_thrugter” which is modeled as an
enumerated data type that can take on the value of DISABLE

— meaning that the thrugter is shut off, or ENABLE, meaning
that the thruster ison:

TDM _thruster — the variable associated with the
control of the TDM thruster

Monitored Controlled
(Input) (Output)
Variables Variables
CMD_disable_enable,
TDM_started TT
> » M > TDM_thruster
11 >
TDM_event_enabled TDM_Modes
TD_1, TDM_thruser
TD_Last_1)
B
TD_Senl First_Marked_Bad
TD_2,
TD Last_2 Key
Condition
TD_Sen2 Table
TD_3,
TD_Last_3 ' Mode
'l Table
TD_Sen3

Figure 3. Modd structurefor TDM

32

Once the system’s data is defined, its behavior can be
modeled. In SCR, this involves defining the vaues of the
controlled (output) varigbles through condition, event, or
mode tables. These tables define the vaue of a variable in
terms of monitored (input), terms (intermediate), and mode

M odding functional requirements

(state) variables. Figure 3 provides a representation of the
TDM model. A condition table defines the output value for
TDM _thrugter. It depends on five term tables and one mode
table. These term and mode tables are directly associated with
the relations defined in Table 1. They result from
relationships derived from the textua requirements. A value
of aterm variable is defined through a condition or event

table as an intermediate value. Terms can be referenced in the
congtraints or vaue cdculaions of other terms or controlled
variables. They reduce the modd complexity by smplifying
expressions and eiminating redundancies.

The TDM(b) requirement results in the three terms
TD_Senl, TD_Sen2, and TD_Sen3 that define the conditions
associated with the sensor sgnd for each landing leg. They
are rdlated to the requirement TDM(c) through the term
Firsd_Marked Bad. This Firs_Marked Bad term models the
requirement for detecting a failed sensor, where the first
sensor with two consecutive reads is marked bad. The term
Firse_ Marked Bad also depends on TDM_Modes, which
depends on TDM_event_enabled. These terms represent
conditions and dtates associated with enabling event
generation. The combination of these term variables are used
to represent the requirements for TDM(d) and TDM(f) that
define the values of the output TDM_thruster. The model
details are described in the following sections, and Figure 4
provides the detailed tabular specification for the term and
condition variables.

33 ModdingrdationsTD_Sen1, TD_Sen2, and
TD_Sen3

The term TD_Sen1 defines the conditions when the touch
down sensor indicates that two consecutive reads have
occurred for landing leg one. When the conditions TD1 and
TD Last 1 (previous read) are sdtisfied the vaue of
TD_Senl is TRUE, otherwise it is FALSE. The relations for
TD_Sen2 and TD_Sen3 are smilar to TD_Sen1, but apply to

landing legs 2 and 3 respectively.
34 Moddingrdation TDM_event_enable

The term TDM_event_enable is an Enumerated variable.
The specified value for TDM_event_enable is TDM_YES
when the command to enable event generation has been
enabled (CMD_dissble enable = ENABLE) and the TDM
executive had been dlowed to run (TDM_darted =
TDM_YES), otherwise TDM_event enabled is set to
TDM_NO.

35 Moddingrdation TDM_modes

The mode TDM_Modes defines the event when the TDM
software trangtions from the state Before event to the
Event gen date. This occurs a the time when
TDM_event_enabled takes on the vdue TDM_YES (and is
represented by the event expression
@T(TDM_event_enabled = TDM_YES). The mode table
a0 defines the event trandition for trangtioning from the
Event_gen dtate back to the Before event state when the
TDM_event_enabled changesto thevalue TDM_NO.

36 Moddingrdationfirs marked bad

The term Firs_Marked Bad is modeled as an Integer that
reurns a value between zero and three. The table
Firsd_Marked Bad is also associated with the mode table
TDM_Modes. Thefirst column of the table containsthe value
Before event and Event_gen, which are the two possble
modes for TDM_Modes. These mode vaues are combined
with the conditions as they specify the required vaue for the
output Firs Marked Bad. When the mode is Before event
the vadue of Firda Marked Bad must aways be zero, as
indicated by the TRUE condition in the row associated with
Before event mode. When the mode is Event_gen, the value
of First_Marked Bad takes on the value of one, two or three
depending on the condition associated with the term for the
sensors TD_Send, TD_Sen2, or TD_Sen3, otherwise it takes
on the value zero.

3.7 Moddingrdation TDM_thruster

The condition table for TDM_thruster also is shown in
Figure 4. Like Firs Marked Bad, TDM_thruster is dso
associated with the mode table TDM_Modes. When the
mode is Before_event the thruster must always be ENABLE.
After the Event gen, the thruster tekes on the vaue
DISABLE when TDM_garted is equa to TDM_YES, with
one of three possible conditions:

1. Firg_Marked Bad = 1, indicating that sensor leg 1
hes been marked bad, and then sensor leg 2
(TD_Sen 2) or sensor leg 3 (TD_Sen 3) has
becometrue.

2. Frst Marked Bad = 2, indicating that sensor leg 2
has been marked bad, and then sensor leg 1
(TD_Sen 1) or sensor leg 3 (TD_Sen 3) has
becometrue.

3. Frs Maked Bad = 3, indicating that sensor leg 3
has been marked bad, and then sensor leg 1
(TD_Sen 1) or sensor leg 2 (TD_Sen 2) has
becometrue.

Otherwise, if the mode is dill
TDM_thruster must be ENABLE when:

1. Firg Maked Bad is zero — indicating that no
sensor has been activated

2. Frst Marked Bad is 1, but neither sensor for leg 2
or 3 has been sensed

3. Frst Marked Bad is 2, but neither sensor for leg 1
or 3 has been sensed

4. Firs_Marked Bad is 3, but neither sensor for leg 1
or 2 has been sensed

Event_gen, then

Condition
CMVD_di sabl e_enabl e=ENABLE NOT(CVD_di sabl e_enabl e=ENABLE
AND AND
TDM started = TDM YES TDM started = TDM YES)
TDM event _enabl ed= |TDM YES TDM NO
TDM_Modes
Source Event Destination
»(Bef ore_event |@(TDM event _enabl ed = TDM YES) Event _gen
Event _gen @ (TDM event _enabl ed = TDM NO Bef ore_event
Modes Condition
Bef ore_event FALSE TRUE
Event _gen TDM started = TDM_YES First_Marked_Bad = 0
AND OR (First_Marked_Bad = 1
((First_Marked_Bad = 1 AND
AND NOT(TD_Sen_2 OR TD_Sen_3))
N (TD_Sen_2 OR TD_Sen_3)) OR (First_Marked_Bad = 2
OR AND
(First_Marked_Bad = 2 NOT(TD_Sen_1 OR TD Sen_3))
AND OR (First_Marked_Bad = 3
(TD_Sen_1 OR TD_Sen_3)) AND
OR NOT(TD_Sen_1 OR TD_Sen_2))
Condition (First_Marked_Bad = 3
TD_1 AND NOT(TD_1 AND AND
TD Last _1 |TD Last_1) (Tb_Sen_1 OR TD_Sen_2)))
TD_Senl= |TRUE FALSE —
TDM_t hrust er= [DI SABLE ENABLE
Condition v
TD_2 AND NOT(TD_2 AND Modes Condition
TD_Last _2 |TD_Last_2) Bef ore_event TRUE FALSE FALSE FALSE
TD_Sen2= [TRUE FALSE — |Event_gen NOT(TD_Sen_1) [TD_Senl |TD_Sen2 |TD_Sen3
> AND
Condition NOT(TD_Sen_2)
TD_3 AND NOT(TD_3 AND AND
TD Last_3 |TD_Last_3) NOT(TD_Sen_3)
TD_Sen3= |TRUE FALSE Fi rst _Mar ked_Bad= 0 1 2 3
Figure4. Behavioral specificationsfor TDM
Table2. Test vectorsfor TDM _thruster
Controlled
Test ID (Qutput) Monitored (Inputs)
CMD_dis
Vector TDM_event| able_ena TD_Last_ TD_Last_ TD_Last_| First_Mark
|DCP|TDM_thruster| TDM_modes| _enabled ble TD_1 1 TD_2 2 TD_3 3 ed_Bad
1 1 ENABLE [Before_event) TDM_NO |DISABLE|{ TRUE | TRUE | TRUE| TRUE | TRUE [TRUE 3
2 1 ENABLE [Before_eventl TDM_NO |DISABLE|[FALSE| FALSE [FALSE| FALSE |FALSE| FALSE 0
3 23 DISABLE Event gen | TDM_YES | ENABLE | TRUE | TRUE [TRUE| TRUE | TRUE| TRUE 1
4 2 DISABLE Event_gen | TDM_YES [ENABLE | TRUE | TRUE | TRUE | TRUE |FALSE| FALSE 1
5 3 DISABLE Event_gen | TDM_YES [ENABLE | TRUE | TRUE |FALSE| FALSE | TRUE | TRUE 1
6 45 DISABLE Event gen | TDM_YES | ENABLE | TRUE | TRUE | TRUE| TRUE | TRUE| TRUE 2
7 4 DISABLE Event_gen | TDM_YES [ENABLE [TRUE | TRUE | TRUE | TRUE |FALSE| FALSE 2
8 5 DISABLE Event gen | TDM_YES | ENABLE | FALSE| FALSE | TRUE | TRUE | TRUE | TRUE 2
9 67 DISABLE Event gen | TDM_YES | ENABLE | TRUE | TRUE | TRUE| TRUE | TRUE| TRUE 3
10 6 DISABLE Event_gen | TDM_YES [ENABLE | TRUE | TRUE |FALSE| FALSE | TRUE | TRUE 3
11 7 DISABLE Event gen | TDM_YES | ENABLE | FALSE| FALSE | TRUE | TRUE | TRUE | TRUE 3
12 8 ENABLE Event gen | TDM_YES | ENABLE | FALSE| TRUE |[FALSE| TRUE |FALSE| TRUE 0
13 8 ENABLE Event_gen | TDM_YES [ENABLE [FALSE| FALSE |FALSE| FALSE |FALSE| FALSE 0
14 9 ENABLE Event gen | TDM_YES | ENABLE | TRUE | TRUE |[FALSE| TRUE |FALSE| TRUE 1
15 9 ENABLE Event_gen | TDM_YES [ENABLE | TRUE | TRUE |FALSE| FALSE |FALSE| FALSE 1
16 10 ENABLE Event_gen | TDM_YES [ENABLE [FALSE| TRUE | TRUE | TRUE |FALSE| TRUE 2
17 10 ENABLE Event_gen | TDM_YES | ENABLE | FALSE| FALSE [TRUE | TRUE |FALSE| FALSE 2
18 11 ENABLE Event_gen | TDM_YES [ENABLE | FALSE| TRUE |FALSE| TRUE | TRUE | TRUE 3
19 11 ENABLE Event_gen | TDM_YES [ENABLE | FALSE| FALSE | FALSE| FALSE | TRUE | TRUE 3

4. Ted vector generation

The SCR-to-T-VEC model trandator transforms each SCR
table into a T-VEC subsystem. The T-VEC compiler converts
each subsystem into a set of primitive test specifications for
test vector generation [BBF97]. The trandated and compiled
verson of the TDM_thruster requirement includes 11 test
specifications. The test vector generator attempts to determine
two test vectors for each test specification based on a test
selection strategy derived from the concept of domain testing
theory. The test generation produced 22 test vectors, one for
the low-bound and one for the high-bound values of the 11 test
Specifications. Table 2 shows atabular representation of the 19
unique test vectors produced for TDM_thruster. Test vectors
with duplicate input and output values derived from different
test specifications are reduced into a unique set of test vectors.
The test vectors include 10 monitored variables and 7 term
variables (not shown in the table). The test values shown in
Table 2 reflect how the test generator systematically sdects
low-bound and high-bound test points at the domain
boundaries. The input vaue ranges and condraints (eg.,
relational operators) of the specification define the domain
boundaries. For example, vector # 1, Firg Marked Bad = 3is
based on high-bound values of the data type range of
SensorlDType, while vector # 2, First_ Marked Bad = O is
based on the low-bound for the data type range. The remainder
of the test cases, pecifically test vectors three through 19 are
associated with the TDM_modes = Event_gen. These cases
systematicaly cover the cases for each combination of the
sensor values for legs one, two, and three, for the various
possible situations when a different sensor leg is marked bad.

“C” Test Driver Schema

dobal init;

Forall tests
init target;
set output invalid;
set inputs;
execute SUT;
get outputs;
store output;

\

5. Tes driver generation and execution

The last step in the process produces test drivers that
execute againg the code. The test driver generator combines
test driver schemas, user-defined object mappings and test
vectors to produce test drivers as illustrated in Figure 5. The
test driver schema encodes an agorithmic pattern for test
execution for the specific test environment. The object
mappings relate model variables to the implementation
objects. The test driver generator creates tet drivers by
repesting the execution steps defined in the schema for each
test vector. There aretypicaly four primary steps for executing
each test case:

e Set the value of the test output to some value
other than what is expected

e Setthe values of the test inputs

* Cause execution of the test

* Retrieve and save the results of the test execution

Test driver schemas describe how to accomplish these steps
for a specific testing environment using a smal language that
acceses information about the specification model, data
objects, types, ranges, test values, and user customizeble
information. A schema aso describes the form of expected
outputs to support results analysis.

An exiging C test driver schema was used to produce the
test driver file TDM_thrugter.c, which is the main program for
the test. TDM_thruster.c is compiled and linked with
sam_Touchdown_Monitor.c (the actud C module for the
TDM software). The test driver TDM_thruster.c performs
some initiaization, sets the inputs, calls the subsystem under
test, and stores the resulting outpuit.

endforal |
Algorithmic pattern Test N
Driver —> é
, - E'.E Test (TDM_thruster.c)
/ - e Inputs Actual
" Test Vectors :—03dt Retrieve Outputs
nputs sam_ Outputs
Touchdown_
Monitor.c
MSDEV
. . NT Environment
Object Mappings

Figure5. Elementsof atest driver

The generated test drivers were executed on aWindows NT
platform. The initid execution with the origina test driver
mode! did not identify any failure, because the test driver did
not operate like the actual code. A red-time multi-tasking
executive periodicaly calsthe TDM code. Continuous callsto
the entry point can propagate and latch state data. The latched
data can inadvertently sgnal a shutdown of the thruster.

The origina test driver called the main entry point once per
test vector, and could not propagate the state data that caused
the latched data to be used by the TDM software. A minor
modification was made to the test driver schema to smulate
the way the multi-tasking executive would call the TDM entry
point. This approach for calling the subsystem under test is
commonly used with other TAF schemas (e.g., MATRIXX test
driver schema) to propagate state data. This modification to the
test driver schema produced atest driver that made two callsto
the main entry point. The execution of the new test driver
resulted in afailure that emulated the Stuation where state data
would propagate and latch into a particular state. The test that
uncovered the failure scenario is associated with the modeled
requirement Firs_Marked Bad, defined in Figure 4.

6. Summary

The TAF approach for automated model-based testing was
applied to the Mars Polar Lander Touchdown Monitor
software. The SCRtool was used to modd textua
requirements. The TAF toolset was used to trandate the
model, while T-VEC generated test vectors and test drivers.
The TAF team traveled to the LMAO site and was able to use
the toolset to identify an error that is the probable cause of the
pre-mature shutdown of the Touchdown Lander thrusters.
These results suggest that the TAF approach has the potentia
to provide more standardized and thorough testing for
verification of critica software and system functionality.

6.1 Other applicationsand results

The core capabilities underlying this approach were
developed in the late 1980s and proven through use in support
of FAA cetifications for flight critical avionics systems
[BB96]. The gpproach supports requirement-based test
coverage mandated by the FAA with significant life cycle cost
savings [Sta99; Sta00; Stall]. The approach reduces codt,
effort, and cycle-time by diminating requirement defects and
autometing testing [Saf00]. Safford’ s presentation summarized
the benefits:

* Better quality requirements for design and
implementation help eliminate rework in those
phases as well as during test

* Verification modeling can reduce the time
normally spent in verification test planning by up
to 50 percent

e Test generation from a verification model can
eliminate up to 90 percent of the manual test
creation and debugging effort

e Both the number of test cases and the phasing of
their execution can be optimized, eliminating test
redundancy

* A known level of reguirements coverage can be
planned, and measured during test execution

The approach and tools have been used for modeling and
testing software and systems. It has been applied to functional
security testing [BBNCO1], aswell as, criticd applicationslike
telemetry communication for heart monitors, flight navigation,
guidance, autopilot logic, display systems, flight management
and contral laws, airborne traffic and collison avoidance. The
approach supports automated test driver generation open (e.g.,
C, C++, Java, Ada, Pel, PL/I, SQL) and proprigtary
languages.

7. Acknowledgements

This work has been a cooperative effort by various
individuals within Lockheed Martin Aeronautics Company
and the Software Productivity Consortium.

8. Rdferences

[BB96] Blackburn, M.R., R.D. Busser, T-VEC: A Toal for
Developing Critical System. In Proceeding of the
Eleventh International Conference on Computer
Assurance, Gaithersburg, Maryland, June 1996.
Blackburn, M.R., RD. Buss, JS. Fontaine,
Automatic Generation of Test Vectorsfor SCR-Style
Specifications, In Proceeding of the 12th Annual
Conference on Computer Assurance, Gaithersburg,
Maryland, June 1997.

Blackburn, M.R., RD. Busser, AM. Nauman, R.
Chandramouli, Model-based Approach to Security
Test Automation, In Proceeding of Quality Week
2001, June 2001.

Hetmeyer, C., R. Jeffords, B. Labaw, Automated
Consstency Checking of Requirements
Specifications. ACM TOSEM, 5(3):231-261, 1996.
Statezni, David, Industriad Application of Modd-
Based Testing, 16th International Conference and
Exposition on Testing Computer Software, June 14-
18, 1999.

Statezni, David. Test Automation Framework, State-
based and Signa Flow Examples, Twelfth Annual
Software Technology Conference, April 30 - May 5,
2000.

Statezni, David. T-VEC's Test Vector Generation
System, Software Testing & Quality Engineering,
May/June 2001.

Safford, Ed L. Test Automation Framework, State-
based and Signa Flow Examples, Twelfth Annual
Software Technology Conference, April 30 - May 5,
2000.

Tsa, W.T., D. Volovik, T.F. Keefe, Automated test
case generation for programs specified by relationd
agebra queries, IEEE Transactions on Software
Engineering, 16(3):316-324, March 1990.

White, L.J, El. Cohen, A Domain Strategy for
Computer Program Tegting, |EEE Transactions on
Software Engineering, 6(3):247-257, May, 1980.

[BBF97]

[BBNCO1]

[HIL96]

[Sta9)

[St200]

[Sta01]

[Saf00]

[TVK90]

[wcsq]

