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Abstract�

This paper describes the application of the Test 
Automation Framework (TAF) on the Mars Polar Lander 
(MPL) software. The premature shutdown of the descent 
engine on the MPL spacecraft is believed to be the most 
likely cause for the mission failure. It is believed that the 
engine shutdown occurred when the three landing legs 
were extended into their deployed position. This event 
created an unanticipated transient touchdown indication 
from the legs, causing the software to inadvertently 
shutdown the descent engines prior to reaching the 
surface of Mars. This spurious indication should have 
been ignored by the Touchdown Monitor (TDM) software, 
but due to a design flaw, was actually “latched,” thus 
causing the premature engine shutdown. The TAF 
approach was used to model the TDM software 
requirements. The associated TAF tools generated tests 
that identified a potential TDM fault. 

1. Introduction 

The Mars Polar Lander (MPL) was launched on January 3, 
1999 and lost on 
December 3, 1999. 
A premature 
shutdown of the 
MPL descent 
engine is believed 
to be the most likely 
cause for the 
mission failure. It is 
believed that the 
engine shutdown occurred because of a failure to properly 
process an electrical transient when the three landing legs 
were extended into their deployed position. This event created 
an incorrect touchdown indication from the legs, causing the 
software to inadvertently shutdown the descent engines prior 
to reaching the surface of Mars. This spurious indication 
should have been ignored by the Touchdown Monitor 
software, but due to a design flaw, was actually “latched,” 
thus causing the premature engine shutdown. Lockheed 
Martin Space Systems Company Astronautics Operations 
(LMAO - Denver) was responsible for the development and 
verification of the MPL spacecraft and on board software.  

The Software Productivity Consortium (Consortium) 
members have requested greater support in the area of 
verification and test automation. To address the need the 

Consortium developed capabilities referred to as the Test 
Automation Framework (TAF). TAF integrates various 
government and commercially available model development 
and test generation tools to support defect prevention and 
automated testing of systems and software. The Consortium 
helps members with technology transfer through pilot 
projects. As a result LMAO requested that the TAF team use 
TAF to detect the error in the TDM system.  

The objective was to demonstrate the capability of the 
TAF approach to detect a deeply hidden problem in the 
implementation of an MPL component called the Lander 
Touchdown Monitor (TDM). LMAO sent the requirements 
and the code to the Consortium TAF team, but did not 
disclose the source or location of the problem. At that time the 
TAF team was not aware of the details of the TDM problem. 
This paper provides an overview of the results of applying the 
TAF to the TDM problem. 

1.1 Results summary 

The TAF team developed a model for the TDM system 
from the requirements supplied by LMAO using the Software 
Cost Reduction (SCR) tool [HJL96]. The TAF team spent 
about 12 staff hours modeling the requirements and building 
the test driver schema to support test injection into the TDM 
C code module supplied by the LMAO team. The TDM 
module is approximately 50 source lines of code. The team 
generated test vectors and test drivers using the T-VEC 
system. The tests were injected into the TDM code module in 
an attempt to uncover the fault. The problem was not 
identified.  

The TAF team flew to LMAO (Denver) to present their 
results on the following week. The developer of the code, 
along with the TDM team and other related LMAO V&V 
staff, were present at the presentation. The TAF team 
explained the model, and executed the generated tests against 
the code. The TAF team observed that the TDM code used 
state data that was managed and accessed through several 
code entry points, and the TDM developer confirmed this. 
The TAF team modified the test schema to simulate multiple 
calls to the entry points much like that of the real-time multi-
tasking executive of the TDM software. These additional calls 
would propagate the state data. New test drivers were 
automatically generated from the original model, and the 
modified test drivers were executed exposing the fault. 

The T-VEC test generation system uses a test selection 
heuristic based on domain testing theory [WC80] where test 
values are selected for each constraint. Domain testing theory 
is based on the intuitive idea that faults in implementation are 



more likely to be found by test points chosen near 
appropriately defined program input and output domain 
boundaries [TVK90]. The test vectors stimulating the failures 
were associated with the constraint that represents the 
situation where a landing leg sensor indicates touchdown for 
two consecutive reads. The test driver generation mechanism 
provides the flexibility to simulate the periodic calls of the 
TDM real-time executive. The combination of the test vector 
generation, which selects inputs for the critical constraint, and 
test driver generation, which emulates the real-time executive 
provided the stimulus to initiate a test failure associated with 
the probable program fault. 

The results of the application suggest that the TAF 
approach may have the potential to provide a systematic and 
cost-effective approach for verification. LMAO believes the 
tool provides a standardized test approach and a more 
thorough test capability than the manual approach. LMAO 
and its customers are considering future pilot projects to more 
fully assess the TAF capabilities. 

2. Approach and toolset 

2.1 Process overview 

The conceptual process flow that relates the artifacts to the 
tools is shown in Figure 1. The TDM specification is modeled 
using the SCRtool. An SCR-to-T-VEC translator translates 
the SCR model to a T-VEC test specification. T-VEC 
automatically generates test vectors (i.e., test cases with test 

input values, expected output values and traceability 
information) and requirement-to-test coverage metrics. T-
VEC automatically generates test drivers to execute tests 
against the TDM code compiled in a Microsoft C++ 
development environment running on a Windows NT 
platform. The execution of the test driver results in actual 
outputs that are then compared with the expected outputs, and 
the results report is produced. SCR concepts and tool 

2.2 SCR concepts and tool 

SCR is a table-based modeling approach that models 
system and software requirements. SCR represents system 
inputs as monitored variables, system outputs as controlled 
variables and intermediate values as term variables. 
Variables are defined as primitive types (e.g., Integers, Float, 
Boolean, Enumeration) or as user-defined types. Behavior is 
defined using a tabular approach relating four model 
elements: modes, conditions, events, and terms. The required 
functionality or behavior of the system is defined using tables 
to relate monitored variables to controlled variables. There are 
three basic types of tables (with two variants): 

• Condition table (with mode or modeless) 
• Event table (with mode or modeless) 
• Mode transition table for a mode class 

A mode class is a state machine, where system states are 
called system modes and the transitions of the state machine 
are characterized by guarded events. A condition characterizes 
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Figure 1. Process flow and artifacts 



 

system state with an expression that evaluates to true or false. 
An event occurs when any system entity changes value.  

The SCR modeling approach permits condition, event and 
mode tables to be combined. Terms and controlled variables 
are functions of input variables, modes, or other terms. Their 
values are defined in the model through event or condition 
tables. This allows complex relationships between monitored 
and controlled variables to be described using terms with 
simpler relationships modeled in condition, event or mode 
tables. 

3. TDM requirements and model 

The LMAO TDM team supplied the textual requirements 
shown in Figure 2 to the TAF Team. 

3.1 Requirements analysis 

Developing SCR models requires identifying the system 
monitored (input) and controlled (output) variables, and 
defining the relationships between them. This process is 
typically iterative. It involves defining the variables, data 
types associated with the variables, and the tables that define 
relationships between the variables. A useful guideline for 
developing SCR models is to work backwards from each 

output to make the process goal-oriented. The value of each 
output is defined in terms of the system inputs. Term 
variables are introduced whenever intermediate values are 
necessary or useful. Breaking the TDM requirement into 
clauses supports identifying variables and relationships. Table 
1 contains elaboration and clarification of the TDM 
requirements to support modeling. It identifies the variables 
and relations associated with each clause. 

The monitored (input) variables identified in the system 
can be refined into the following set:  

• TD_1, TD_2, TD_3 – the current sensor value 
for landing legs 1, 2, and 3 respectively 

• TD_1_Last, TD_2_Last, TD_3_Last - the sensor 
value for landing legs 1, 2, and 3 from the 
previous cycle 

• CMD_disable_enable – the state of the event 
generation flag – when enabled the touchdown 
signal can be issued 

• TDM_started – the global variable that allows 
the TDM executive to run 

 

 
Figure 2. TDM requirements 



Table 1. TDM requirements 
Requirement Statement/Clause Variables Relations

TD_1, TD_1_Last
TD_2, TD_2_Last
TD_3, TD_3_Last

TDM(c) Upon enabling touchdown event generation, the Lander 
flight software shall attempt to detect failed sensors by marking 
the sensor as bad when the sensor indicates “touchdown state” 
on two consecutive reads. All First_Marked_Bad
TDM(d) The Lander flight software shall generate the landing 
event based on two consecutive reads indicating touchdown 
from any one of the "good" touchdown sensors. All TDM_thruster
TDM(e) The Lander flight software shall command a shutdown 
of thrusters within 20 milliseconds of touchdown detect. Outside scope of code module
TDM(f) The Lander flight software shall set a sequencing global 
variable to indicate the touchdown event has occurred. All TDM_thruster

CMD_disable_enable

TDM_started 
TDM(g) The Lander flight software shall enable event 
generation only while cyclic event detection is active.

TDM_event_enabled,
TMD_Modes,
TDM_thruster

TDM(a) The Lander flight software shall cyclically check the 
state of each of the three touchdown sensors (one per leg) at 
100 Hz during EDL.
TDM(b) The Lander flight software shall be able to cyclically 
check the touchdown event state with or without touchdown 
event generation enabled.

Periodic processing controlled 
in test driver

TD_Sen1, TD_Sen2, 
TD_Sen3

 
 

Although the requirements document indicates that the 
output is “Touchdown time,” the key output associated with 
the code is called “TDM_thruster” which is modeled as an 
enumerated data type that can take on the value of DISABLE 

– meaning that the thruster is shut off, or ENABLE, meaning 
that the thruster is on: 

• TDM_thruster – the variable associated with the 
control of the TDM thruster 
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Figure 3. Model structure for TDM 

 
3.2 Modeling functional requirements 

Once the system’s data is defined, its behavior can be 
modeled. In SCR, this involves defining the values of the 
controlled (output) variables through condition, event, or 
mode tables. These tables define the value of a variable in 
terms of monitored (input), terms (intermediate), and mode 

(state) variables. Figure 3 provides a representation of the 
TDM model. A condition table defines the output value for 
TDM_thruster. It depends on five term tables and one mode 
table. These term and mode tables are directly associated with 
the relations defined in Table 1. They result from 
relationships derived from the textual requirements. A value 
of a term variable is defined through a condition or event 



table as an intermediate value. Terms can be referenced in the 
constraints or value calculations of other terms or controlled 
variables. They reduce the model complexity by simplifying 
expressions and eliminating redundancies. 

The TDM(b) requirement results in the three terms 
TD_Sen1, TD_Sen2, and TD_Sen3 that define the conditions 
associated with the sensor signal for each landing leg. They 
are related to the requirement TDM(c) through the term 
First_Marked_Bad. This First_Marked_Bad term models the 
requirement for detecting a failed sensor, where the first 
sensor with two consecutive reads is marked bad. The term 
First_Marked_Bad also depends on TDM_Modes, which 
depends on TDM_event_enabled. These terms represent 
conditions and states associated with enabling event 
generation. The combination of these term variables are used 
to represent the requirements for TDM(d) and TDM(f) that 
define the values of the output TDM_thruster. The model 
details are described in the following sections, and Figure 4 
provides the detailed tabular specification for the term and 
condition variables. 

3.3 Modeling relations TD_Sen1, TD_Sen2, and 
TD_Sen3 

The term TD_Sen1 defines the conditions when the touch 
down sensor indicates that two consecutive reads have 
occurred for landing leg one. When the conditions TD1 and 
TD_Last_1 (previous read) are satisfied the value of 
TD_Sen1 is TRUE, otherwise it is FALSE. The relations for 
TD_Sen2 and TD_Sen3 are similar to TD_Sen1, but apply to 
landing legs 2 and 3 respectively. 

3.4 Modeling relation TDM_event_enable 

The term TDM_event_enable is an Enumerated variable. 
The specified value for TDM_event_enable is TDM_YES 
when the command to enable event generation has been 
enabled (CMD_disable_enable = ENABLE) and the TDM 
executive had been allowed to run (TDM_started = 
TDM_YES), otherwise TDM_event_enabled is set to 
TDM_NO. 

3.5 Modeling relation TDM_modes 

The mode TDM_Modes defines the event when the TDM 
software transitions from the state Before_event to the 
Event_gen state. This occurs at the time when 
TDM_event_enabled takes on the value TDM_YES (and is 
represented by the event expression 
@T(TDM_event_enabled = TDM_YES). The mode table 
also defines the event transition for transitioning from the 
Event_gen state back to the Before_event state when the 
TDM_event_enabled changes to the value TDM_NO. 

3.6 Modeling relation first_marked_bad 

The term First_Marked_Bad is modeled as an Integer that 
returns a value between zero and three. The table 
First_Marked_Bad is also associated with the mode table 
TDM_Modes. The first column of the table contains the value 
Before_event and Event_gen, which are the two possible 
modes for TDM_Modes. These mode values are combined 
with the conditions as they specify the required value for the 
output First_Marked_Bad. When the mode is Before_event 
the value of First_Marked_Bad must always be zero, as 
indicated by the TRUE condition in the row associated with 
Before_event mode. When the mode is Event_gen, the value 
of First_Marked_Bad takes on the value of one, two or three 
depending on the condition associated with the term for the 
sensors TD_Sen1, TD_Sen2, or TD_Sen3, otherwise it takes 
on the value zero.  

3.7 Modeling relation TDM_thruster 

The condition table for TDM_thruster also is shown in 
Figure 4. Like First_Marked_Bad, TDM_thruster is also 
associated with the mode table TDM_Modes. When the 
mode is Before_event the thruster must always be ENABLE. 
After the Event_gen, the thruster takes on the value 
DISABLE when TDM_started is equal to TDM_YES, with 
one of three possible conditions: 

1. First_Marked_Bad = 1, indicating that sensor leg 1 
has been marked bad, and then sensor leg 2 
(TD_Sen_2) or sensor leg 3 (TD_Sen_3) has 
become true. 

2. First_Marked_Bad = 2, indicating that sensor leg 2 
has been marked bad, and then sensor leg 1 
(TD_Sen_1) or sensor leg 3 (TD_Sen_3) has 
become true. 

3. First_Marked_Bad = 3, indicating that sensor leg 3 
has been marked bad, and then sensor leg 1 
(TD_Sen_1) or sensor leg 2 (TD_Sen_2) has 
become true. 

Otherwise, if the mode is still Event_gen, then 
TDM_thruster must be ENABLE when: 

1. First_Marked_Bad is zero – indicating that no 
sensor has been activated 

2. First_Marked_Bad is 1, but neither sensor for leg 2 
or 3 has been sensed 

3. First_Marked_Bad is 2, but neither sensor for leg 1 
or 3 has been sensed 

4. First_Marked_Bad is 3, but neither sensor for leg 1 
or 2 has been sensed 

 



 

CMD_disable_enable=ENABLE
AND
TDM_started = TDM_YES

NOT(CMD_disable_enable=ENABLE
    AND
    TDM_started = TDM_YES)

TDM_event_enabled= TDM_YES TDM_NO

Condition

Modes
Before_event TRUE FALSE FALSE FALSE
Event_gen NOT(TD_Sen_1) 

AND 
NOT(TD_Sen_2) 
AND 
NOT(TD_Sen_3)

TD_Sen1 TD_Sen2 TD_Sen3

First_Marked_Bad= 0 1 2 3

Condition

Source Event Destination
Before_event @T(TDM_event_enabled = TDM_YES) Event_gen
Event_gen @T(TDM_event_enabled = TDM_NO) Before_event

TDM_Modes

Modes
Before_event FALSE TRUE
Event_gen TDM_started = TDM_YES

AND
( (First_Marked_Bad = 1
   AND
  (TD_Sen_2 OR TD_Sen_3))
OR
  (First_Marked_Bad = 2
   AND
  (TD_Sen_1 OR TD_Sen_3))
OR
  (First_Marked_Bad = 3
   AND
  (TD_Sen_1 OR TD_Sen_2)))

First_Marked_Bad = 0
OR (First_Marked_Bad = 1
    AND
    NOT(TD_Sen_2 OR TD_Sen_3))
OR (First_Marked_Bad = 2
    AND
    NOT(TD_Sen_1 OR TD_Sen_3))
OR (First_Marked_Bad = 3
    AND
    NOT(TD_Sen_1 OR TD_Sen_2))

TDM_thruster= DISABLE ENABLE

Condition

TD_1 AND 
TD_Last_1

NOT(TD_1 AND 
TD_Last_1)

TD_Sen1= TRUE FALSE

TD_2 AND 
TD_Last_2

NOT(TD_2 AND 
TD_Last_2)

TD_Sen2= TRUE FALSE

TD_3 AND 
TD_Last_3

NOT(TD_3 AND 
TD_Last_3)

TD_Sen3= TRUE FALSE

Condition

Condition

Condition

 
Figure 4. Behavioral specifications for TDM 

Table 2. Test vectors for TDM_thruster 
Controlled 
(Output)

Vector 
# DCP TDM_thruster TDM_modes

TDM_event
_enabled

CMD_dis
able_ena

ble TD_1
TD_Last_

1 TD_2
TD_Last_

2 TD_3
TD_Last_

3
First_Mark

ed_Bad
1 1 ENABLE Before_event TDM_NO DISABLE TRUE TRUE TRUE TRUE TRUE TRUE 3
2 1 ENABLE Before_event TDM_NO DISABLE FALSE FALSE FALSE FALSE FALSE FALSE 0
3 2 3 DISABLE Event_gen TDM_YES ENABLE TRUE TRUE TRUE TRUE TRUE TRUE 1
4 2 DISABLE Event_gen TDM_YES ENABLE TRUE TRUE TRUE TRUE FALSE FALSE 1
5 3 DISABLE Event_gen TDM_YES ENABLE TRUE TRUE FALSE FALSE TRUE TRUE 1
6 4 5 DISABLE Event_gen TDM_YES ENABLE TRUE TRUE TRUE TRUE TRUE TRUE 2
7 4 DISABLE Event_gen TDM_YES ENABLE TRUE TRUE TRUE TRUE FALSE FALSE 2
8 5 DISABLE Event_gen TDM_YES ENABLE FALSE FALSE TRUE TRUE TRUE TRUE 2
9 6 7 DISABLE Event_gen TDM_YES ENABLE TRUE TRUE TRUE TRUE TRUE TRUE 3
10 6 DISABLE Event_gen TDM_YES ENABLE TRUE TRUE FALSE FALSE TRUE TRUE 3
11 7 DISABLE Event_gen TDM_YES ENABLE FALSE FALSE TRUE TRUE TRUE TRUE 3
12 8 ENABLE Event_gen TDM_YES ENABLE FALSE TRUE FALSE TRUE FALSE TRUE 0
13 8 ENABLE Event_gen TDM_YES ENABLE FALSE FALSE FALSE FALSE FALSE FALSE 0
14 9 ENABLE Event_gen TDM_YES ENABLE TRUE TRUE FALSE TRUE FALSE TRUE 1
15 9 ENABLE Event_gen TDM_YES ENABLE TRUE TRUE FALSE FALSE FALSE FALSE 1
16 10 ENABLE Event_gen TDM_YES ENABLE FALSE TRUE TRUE TRUE FALSE TRUE 2
17 10 ENABLE Event_gen TDM_YES ENABLE FALSE FALSE TRUE TRUE FALSE FALSE 2
18 11 ENABLE Event_gen TDM_YES ENABLE FALSE TRUE FALSE TRUE TRUE TRUE 3
19 11 ENABLE Event_gen TDM_YES ENABLE FALSE FALSE FALSE FALSE TRUE TRUE 3

Test ID Monitored (Inputs)

 
 



 

4. Test vector generation 

The SCR-to-T-VEC model translator transforms each SCR 
table into a T-VEC subsystem. The T-VEC compiler converts 
each subsystem into a set of primitive test specifications for 
test vector generation [BBF97]. The translated and compiled 
version of the TDM_thruster requirement includes 11 test 
specifications. The test vector generator attempts to determine 
two test vectors for each test specification based on a test 
selection strategy derived from the concept of domain testing 
theory. The test generation produced 22 test vectors, one for 
the low-bound and one for the high-bound values of the 11 test 
specifications. Table 2 shows a tabular representation of the 19 
unique test vectors produced for TDM_thruster. Test vectors 
with duplicate input and output values derived from different 
test specifications are reduced into a unique set of test vectors. 
The test vectors include 10 monitored variables and 7 term 
variables (not shown in the table). The test values shown in 
Table 2 reflect how the test generator systematically selects 
low-bound and high-bound test points at the domain 
boundaries. The input value ranges and constraints (e.g., 
relational operators) of the specification define the domain 
boundaries. For example, vector # 1, First_Marked_Bad = 3 is 
based on high-bound values of the data type range of 
SensorIDType, while vector # 2, First_Marked_Bad = 0 is 
based on the low-bound for the data type range. The remainder 
of the test cases, specifically test vectors three through 19 are 
associated with the TDM_modes = Event_gen. These cases 
systematically cover the cases for each combination of the 
sensor values for legs one, two, and three, for the various 
possible situations when a different sensor leg is marked bad. 

5. Test driver generation and execution 

The last step in the process produces test drivers that 
execute against the code. The test driver generator combines 
test driver schemas, user-defined object mappings and test 
vectors to produce test drivers as illustrated in Figure 5. The 
test driver schema encodes an algorithmic pattern for test 
execution for the specific test environment. The object 
mappings relate model variables to the implementation 
objects. The test driver generator creates test drivers by 
repeating the execution steps defined in the schema for each 
test vector. There are typically four primary steps for executing 
each test case:  

• Set the value of the test output to some value 
other than what is expected 

• Set the values of the test inputs 
• Cause execution of the test 
• Retrieve and save the results of the test execution 

Test driver schemas describe how to accomplish these steps 
for a specific testing environment using a small language that 
accesses information about the specification model, data 
objects, types, ranges, test values, and user customizable 
information. A schema also describes the form of expected 
outputs to support results analysis. 

An existing C test driver schema was used to produce the 
test driver file TDM_thruster.c, which is the main program for 
the test. TDM_thruster.c is compiled and linked with 
sam_Touchdown_Monitor.c (the actual C module for the 
TDM software). The test driver TDM_thruster.c performs 
some initialization, sets the inputs, calls the subsystem under 
test, and stores the resulting output. 
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Figure 5. Elements of a test driver 

 



 

The generated test drivers were executed on a Windows NT 
platform. The initial execution with the original test driver 
model did not identify any failure, because the test driver did 
not operate like the actual code. A real-time multi-tasking 
executive periodically calls the TDM code. Continuous calls to 
the entry point can propagate and latch state data. The latched 
data can inadvertently signal a shutdown of the thruster.  

The original test driver called the main entry point once per 
test vector, and could not propagate the state data that caused 
the latched data to be used by the TDM software. A minor 
modification was made to the test driver schema to simulate 
the way the multi-tasking executive would call the TDM entry 
point. This approach for calling the subsystem under test is 
commonly used with other TAF schemas (e.g., MATRIXx test 
driver schema) to propagate state data. This modification to the 
test driver schema produced a test driver that made two calls to 
the main entry point. The execution of the new test driver 
resulted in a failure that emulated the situation where state data 
would propagate and latch into a particular state. The test that 
uncovered the failure scenario is associated with the modeled 
requirement First_Marked_Bad, defined in Figure 4.  

6. Summary 

The TAF approach for automated model-based testing was 
applied to the Mars Polar Lander Touchdown Monitor 
software. The SCRtool was used to model textual 
requirements. The TAF toolset was used to translate the 
model, while T-VEC generated test vectors and test drivers. 
The TAF team traveled to the LMAO site and was able to use 
the toolset to identify an error that is the probable cause of the 
pre-mature shutdown of the Touchdown Lander thrusters. 
These results suggest that the TAF approach has the potential 
to provide more standardized and thorough testing for 
verification of critical software and system functionality. 

6.1 Other applications and results 

The core capabilities underlying this approach were 
developed in the late 1980s and proven through use in support 
of FAA certifications for flight critical avionics systems 
[BB96]. The approach supports requirement-based test 
coverage mandated by the FAA with significant life cycle cost 
savings [Sta99; Sta00; Sta01]. The approach reduces cost, 
effort, and cycle-time by eliminating requirement defects and 
automating testing [Saf00]. Safford’s presentation summarized 
the benefits: 

• Better quality requirements for design and 
implementation help eliminate rework in those 
phases as well as during test 

• Verification modeling can reduce the time 
normally spent in verification test planning by up 
to 50 percent 

• Test generation from a verification model can 
eliminate up to 90 percent of the manual test 
creation and debugging effort 

• Both the number of test cases and the phasing of 
their execution can be optimized, eliminating test 
redundancy  

• A known level of requirements coverage can be 
planned, and measured during test execution 

The approach and tools have been used for modeling and 
testing software and systems. It has been applied to functional 
security testing [BBNC01], as well as, critical applications like 
telemetry communication for heart monitors, flight navigation, 
guidance, autopilot logic, display systems, flight management 
and control laws, airborne traffic and collision avoidance. The 
approach supports automated test driver generation open (e.g., 
C, C++, Java, Ada, Perl, PL/I, SQL) and proprietary 
languages. 
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