
   

 

 
 

Using Model-Based Testing to Assess Smart Card Interoperability Conformance 
Mark BLACKBURN                                                                                                        

T-VEC Technologies/SPC  Herndon, VA, USA                                                                                 
blackburn@tvec.com 

and 

Ramaswamy CHANDRAMOULI                                                                                            
National Institute of Standards & Technology                                                                                 

Gaithersburg, MD, USA – mouli@nist.gov 
ABSTRACT 

Smart cards are being used to provide security for many types of 
applications, and with an estimated market of 3.3 billion in 
2005, their usefulness is based on their intrinsic portability and 
security. The National Institute of Standards and Technology 
(NIST) initiated the Smart Card Interoperability Program to 
provide standards (Government Smart Card Interoperability 
Specification –GSC-IS) and tests to accelerate the use of this 
technology.  The GSC-IS provides specifications for 
interoperability for Smart Card-Based Applications at two layers 
– the first one called the Basic Service Interface (BSI) layer and 
the second one called the Virtual Card-Edge (VCEI) layer. The 
BSI layer is the interface between a client application and the 
smart card middleware while the VCEI layer is the interface 
between the Smart Card Middleware and on-card application. 
This paper describes the approach and results of a model-based 
test generation effort that tests a smart card middleware 
implementation for conformance to the BSI layer of GSC-IS 
specifications. Our approach consists of using the function 
signatures in the BSI layer of GSC-IS as requirements to 
develop a verification model and then generating test vectors 
and executable test code based on the model to facilitate testing 
of a smart card middleware implementation. The tests are 
generated for Java language binding of the BSI specification. 

Keywords: Smart Card Interoperability Specification, Test 
Automation, Model-Based Testing, Requirement-based Testing, 
Requirement Modeling. 
 

1. INTRODUCTION 
 

The Government Smart Card Program is a joint program led by 
NIST and GSA, in conjunction with other federal agencies, with the 
primary goal of building a framework for smart card interoperability, 
enabling broad adoption of this critical technology by the public and 
private sectors.  As a first step towards this goal, NIST developed the 
Government Smart Card Interoperability Specification (GSC-IS) [1], 
a set of interface requirements that provides interoperability at two 
layers and consists of the following: 

• A set of interface specifications called the Basic Service 
Interface (BSI) that will enable any Client Application to 
interact with Smart Card Middleware (also called the Smart 
Card Service Provider Module (SCSPM) ) to obtain a pre-
defined set of services using standardized method calls. 

• A set of interface specifications called the Virtual Card Edge 
Interface (VCEI) that specifies the format of commands (called 
Application program Data Units (APDUs)) that a GSC-IS 
compliant Smart card must support. To allow for the possibility 
of the usage of smart cards whose native APDU set is different 
from the set defined in VCEI, the GSC-IS also calls for 
definition of a data structure called the Card Capability 
Container (CCC) that contains the mapping from the GSC-IS 
specified VCEI APDU set to the Smart Card’s native APDU 
set and the associated functionality within SCSPM to actually 
generate the mapped APDU. 

To test any vendor offering for conformance to GSC-IS, NIST has to 
develop conformance testing approaches. One such approach is 
described in [2]. In another parallel effort, NIST also developed a 
conformance test development approach that is based on a well-
established framework called the Test Automation Framework [3]. 
Based on this framework, we are seeking to develop a formal 
verification model of all functional requirements (in our case the 
GSC-IS interface specifications) for the targets under test (in our 
case the Smart Card Middleware (SCSPM) and the Smart Card 
itself) and use that as the basis for automatic generation of 
executable test code.  However out of the two interoperability layers 
covered by GSC-IS, the discussions in this paper pertain to the 
modeling and development of tests for the 23 methods in the BSI 
layer of GSC-IS (i.e., between client application and smart card 
middleware (SCSPM)). 

The organization of the rest of the paper is as follows. In section 2, 
we describe the overall GSC-IS architecture showing the role of the 
BSI and VCEI layers in the Smart-Card based application 
infrastructure. Section 3 outlines the salient steps involved in our 
model-based test generation approach for testing a Smart Card 
Middleware (referred to as SCSPM in this paper) for conformance to 
BSI method definitions. In section 4 we illustrate using an example 
the process of developing a Software Cost Reduction (SCR) [4] 
model of a BSI method and the logic involved in combining the 
models of individual functions (methods) to model transactions 
(sequence of method calls) and to generate conformance tests for 
those transactions. In the absence of a GSC-IS conformant Smart 
Card Middleware (SCSPM), we developed a SCSPM simulator to 
validate the generated test code. Section 5 provides summary 
statistics on the model paths and test vectors generated for testing a 
smart card middleware for GSC-IS BSI layer conformance. 

2. GSC-IS ARCHITECTURE & TESTING GOALS 



   
The foundational architecture of a smart card-based application 
based upon which GSC-IS interoperability specification has been 
formulated consists of the following components: 

• Client Application 

• Smart Card Middleware 

• Smart Card Environment consisting of Card Reader Driver, 
Card Reader and on-card application. 

The interaction layer between the client application and the Smart 
Card Middleware (SCSPM) is called Basic Service Interface (BSI). 
Interoperability at the BSI layer is defined in terms of function 
signatures for 23 BSI methods that should be supported by any 
Smart Card Middleware (SCSPM) implementation. The other 
interaction layer in the GSC-IS architecture is the one between the 
SCSPM and Smart Card Environment called the Virtual Card Edge 
Interface (VCEI). Interoperability at the VCEI layer is theoretically 

defined in terms of the ability of SCSPM to generate a command to 
the smart card that is listed in the default GSC-IS command set 
(called APDU set where APDU stands for Application Protocol 
Data Unit) as a consequence of invoking a BSI method or a 
sequence of BSI methods from a client application. Since it is not 
realistic to expect all smart cards to support this GSC-IS APDU set, 
practical interoperability at the VCEI layer is defined in terms of the 
smart card carrying a data container (e.g., an elementary file in a file 
system card) called by a special name – Card Capability Container 
(CCC) that contains the translation data for mapping commands in 
the default GSC-IS APDU set to the card’s native APDU set as well 
as the correct program logic within the SCSPM implementation that 
performs this mapping to generate the appropriate card specific 
APDUs. Figure 1 is the schematic diagram showing the position of 
the two layers (BSI and VCEI) in the GSC-IS architecture as well as 
the list of 23 methods (functions) in the BSI layer.  

Applications

Basic Service Interface (BSI)

Virtual Card Edge Interface (VCEI)

GSCIS
Compliant
Smart Card

gscBsiGcDataCreate
gscBsiGcDataDelete
gscBsiGcGetContainerProperties
gscBsiGcReadTagList
gscBsiGcReadValue
gscBsiGcUpdateValue
gscBsiGetChallenge
gscBsiGetCryptoProperties
gscBsiPkiCompute
gscBsiPkiGetCertificate
gscBsiSkiInternalAuthenticate
gscBsiUtilAcquireContext
gscBsiUtilBeginTransaction
gscBsiUtilConnect
gscBsiUtilDisconnect
gscBsiUtilEndTransaction
gscBsiUtilGetCardProperties
gscBsiUtilGetCardStatus
gscBsiUtilGetExtendedErrorText
gscBsiUtilGetReaderList
gscBsiUtilGetVersion
gscBsiUtilPassthru
gscBsiUtilReleaseContext

BSI Interface Methods

 
 

Figure 1 - GSC-IS Conceptual Architecture and the List of BSI Methods 

 
The primary goals in developing a conformance test 
methodology for testing a SCSPM and a card implementation 
for conformance to BSI and VCEI layers respectively of GSC-
IS are: 
 
• To validate the GSC-IS for any inconsistencies and non-

realizable conditions or outcomes. 

 
• To identify difficulties encountered with other external 

components (like Smart Card Reader Driver, the Card 
Reader etc) in the smart-card application environment that 
are outside the scope of the GSC-IS and which may have a 
bearing on ensuring GSC-IS compliance. 

 
 

 



   

 

Test Driver

mapping

schema

Test Driver

mapping

schema

Government Smart Card 
Interoperability Specification

T-VEC Tabular Modeler

Test Vectors T-VEC 
Test Driver 
Generator

Interfaces
Data Types
Variables
Constants

Behavior
Conditions

Events
State machines

Functions

Test  Execution Environment

+

Simulator, Workstation, Target

Java – T-VEC Java Package

Modeler Role

 

T-VEC Test Vector Generator
Generate test vectors 

to automate test case design

 

 

Figure 2. Test Generation for GSC-IS Conformance - Process Overview 
 

3. SALIENT FEATURES OF MODEL-BASED TEST 
GENERATION 

The process steps (shown in Figure 2) involved in developing and 
generating conformance tests for the BSI methods of GSC-IS are: 

1. PS1: Building a Software Cost Reduction (SCR) model  
for the BSI methods using  the T-VEC Tabular Modeler 
(TTM1) 

2. PS2: Translating the SCR model into T-VEC linear model 
[5]. 

3. PS3: Generating the test vectors from the model for 
testing conformance to BSI layer specifications of GSC-
IS. 

4. PS4: Generating a test driver to execute the test vectors 
against an SCSPM implementation 

5. PS5: Execute the test driver 
6. PS6: Evaluating test results and producing test results 

report 
 
In the above sequence of process steps, the generation of the test 
driver itself involves several activities. The terms in the in the 
behavioral model (Process Step 2) have to be mapped to the 
variables in the interface commands that will exercise the 

                                                 
1 T-VEC Tabular Modeler (TTM) is based on the Software 

Cost Reduction (SCR) method. 
 
 
 
 

product (in our case SCSPM for BSI layer testing) under test. 
This is the information that is shown with the title “mapping” in 
the diagram above. The syntax of the mapping information 
depends upon the language binding used. Here in our toolkit, 
the executable test code is Java and hence the “mapping” 
information consists of Java language variables. Next, we need 
an algorithmic pattern (e.g., initialization, loading of test vectors 
etc) for conducting conformance test for a BSI method. This 
information is labeled as “schema” in the above diagram. 

 
4. MODELING AND TEST GENERATION – AN 

ILLUSTRATIVE EXAMPLE 
 

A meaningful and useful interaction in a smart card-based 
application occurs only through transactions. A transaction in turn is 
nothing but an ordered sequence of method calls. Consequently our 
GSC-IS conformance testing should consist of generating tests for 
verifying transaction behavior. Hence our overall tasks consists of  
modeling the individual methods, generating test vectors and 
executable test code for exercising each of those methods, 



   

 

identifying the sequence of method calls for a particular transaction 
and then running the generated test codes for methods in that 
sequence. For example the transaction – read the tag value in a 
container in a smart card consists of the following sequence of 
method calls. 

• gcsBsiUtilConnect 
• gcsBsiGetContainerProperties (optionally a card may 

also be involved in multiple transactions) 
• gcsBsiUtilAcquireContext 
• gcsBsiGcReadTagList 
• g

c
s

BsiGcReadValue 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 

Figure 3 – Function Signature for gscBsiUtilConnect ( ) Method 
 

Let us now look at the process involved in modeling the first 
method – gscBsiUtilConnect.  In order to model this method we 
need to look at the definition of the method (called function 
signature) in the GSC-IS document (shown in Figure 3). The 
function signature specifies the name of the method, the set of 
input and output parameters and a several of return codes. The 
GSC-IS also gives textual description (not shown here) of the 
conditions (input parameter values and environmental settings 

(e.g., Card not in the Reader)) that determine each of the return 
code values. It is this textual description that provides the 
behavior of the methods and hence forms the building blocks 
for modeling the method in SCR. Specifically in SCR, a method 
is modeled as a condition table that has the same name as the 
method name and consisting of the following columns: 

4.5.4 gscBsiUtilConnect() 
 

Purpose: Establish a logical connection with the smart card in a specified reader. 
BSI_TIMEOUT_ERROR will be returned if a connection cannot be established within a 
specified time. The timeout value is implementation dependent. 
 
Prototype: unsigned long gscBsiUtilConnect( 
IN string readerName, 
OUT unsigned long hCard 
); 
 
Parameters: hCard: Card connection handle. 
readerName: Name of the reader that the smart card is inserted into. If this field is a NULL 
pointer, the SPS shall attempt to connect to the smart card in the first available reader, as 
returned by a call to the BSI’s function 
gscBsiUtilGetReaderList(). The reader name string shall be stored as ASCII encoded 
String. (See Section 4.2) 
 
 
Return Codes: BSI_OK 
BSI_UNKNOWN_READER 
BSI_CARD_ABSENT 
BSI_TIMEOUT_ERROR 
BSI_UNKNOWN_ERROR 

 



   
• A column named condition that contains predicates 

describing the combination of input values  & 
environmental settings 

• A column named assignment that gives the associated 
return code corresponding to the condition. 

 

Since there are 5 return codes in the function signature for the 
gscBsiUtilConnect ( ) method, the SCR condition table for this 

method consists of 5 rows as shown in Figure 4. Each different 
output (corresponding to a return code in the method signature) for 
the model of any method defines different conditions on the inputs or 
terms. Thus formulating conditions for all of the return codes of a 
method constitute a complete model of the method.  

 

 Let us now analyze the input parameter values and environmental 
settings that determine a particular value of return code (i.e., 
BSI_OK). 

BSI_OK when 
 
  (Reader1CardReady OR Reader2CardReady)  
  AND NOT iTimeoutError  
  AND NOT iUnknownError  
  AND tmDisconnect 
 
Where Reader1CardReady is a term that is TRUE when 
  (iReaderName = READER1 OR iReaderName = NULL)  
  AND  

  (iCardLocation = READER1 OR iCardLocation = 
BOTH) 
 

This models the situation where there are one or more card readers, 
and there is a card location. If there is a valid card reader ready, and 
there is not a time-out or an unknown error, the method should return 
BSI_OK, and then disconnect. In addition, various error conditions 
are often established to represent an input to the subsystem. This is 
done because part of the model must represent elements of the test 
environment, such as the availability of a card, or a card in, or not in, 
the reader. 

 

  
Figure 4 – Condition Table for the Method gscBsiUtilConnect ( ) 

From the above model definition, it should be clear that while 
modeling a method we take into account not only just the input 
parameter values as defined in the method signature but also external 
inputs as well so that the method’s model can generate the data 
needed for conducting a self-contained test (with a complete test 
environment) on the method’s behavior. Yet another feature of the 
SCR model for a BSI method behavior is that the conditions for the 
successful execution of the method also include predicates that 

indicate successful execution of any of the other methods that are 
pre-requisites to the method being modeled. 

For example let us examine the method gscBsiUtilAcquireContext. 
Since this method is invoked after gscBsiUtilConnect and 
gscBsiGetContainerProperties, a success return code BSI_OK for 
this gscBsiUtilAcquireContext should include conditions where a 
successful connection has occurred [tmConnect] through invocation 
of gscBsiUtilConnect, all container properties have been retrieved 



   
[tmGetContainerProperties] through invocation of 
gscBsiGetContainerProperties and more specifically the access 
control rules (ACRset) have been set (values BSI_ACR_ALWAYS 
or BSI_ACR_XAUTH). In addition, there are a number of other 
conditions that must also hold for gscBsiUtilAquireContext to 
return BSI_OK: the handle to the card must be good [NOT 
tmBadHandle], there must be a valid application identifier [NOT 
tmBadAID], the access control rules must be available [NOT 
iACRNotAvailable], there is valid authentication data [NOT 
iBadAuth], the card is not removed from the reader [NOT 
tmCardRemoved], the pin is not blocked [NOT iPinBlocked], the 
card reader has performed a successful authentication exchange with 
the smart card [NOT iTerminalAuth], and no method has returned an 
unknown error code [tmUnknownError].  

So far what we have described is just the process step 1 (PS1 in 
section 3).  The SCR model of the BSI layer of GSC-IS now consists 
of a set of tables one for each BSI method. This model is not 
amenable for generation of test vectors. To facilitate this operation 
(i.e., generation of test vectors) the SCR model is linearized (made 
one-dimensional) into a disjunctive set of input-out relations (called 
functional relationships (FRs)) through process step 2 (PS2). The 
resulting model is called the T-VEC linear model. 

Now each of the functional relationships (FRs) of the T-VEC linear 
model becomes a model path since a disjunction of the individual 
FRs make up the entire model. If at least one vector of values that 
satisfies a given FR can be found, we have obtained test data to 
cover that path. If we can generate a set of test vectors that satisfies 
all FRs in the T-VEC model then we have obtained complete model 
coverage. This is exactly the logic behind the test vector generation 
process step (PS3). 

At this stage in our automated conformance test generation effort for 
GSC-IS, we have the T-VEC behavioral model and a set of test 
vectors. This information alone is not sufficient for generating 
executable test code. We need to map every input term defined in the 
behavioral model (i.e., iReaderName, iCardLocation etc) into 
variables in the test harness (actual software variables in the 
environment under test) and then their actual values must be set. The 
data structure that provides this translation is what is known as 
“object mapping.” An object mapping specifies the relationship 
between model entities and implementation interfaces that are used 
for sending and receiving commands from the Smart Card 
Middleware (SCSPM) and the card itself. Also for execution of each 
test iteration, the input values have to be reset, a new test vector(s) 
has(have) to be loaded and the generated values have to be cleaned 
up at the end of the test. In addition there are some additional 
operations that have to be performed in a smart-card based 
application environment that have nothing to do with interoperability 
specifications. These include:  Inserting/Removing smart cards from 
the reader, Attaching/Detaching Readers etc. All these house-
keeping activities are encoded into an algorithmic pattern of 
sequence of steps called “test schema.” Now the behavioral model, 
the test vectors, the object mapping file and test schema file form all 
the ingredients necessary for generating executable code and are thus 
fed into the T-VEC’s Java test driver generator to execute test code 
in Java (PS4). The test driver generator also generates and Expected 
Output file (EOT) based on the test vectors (that form sets of 
input/output values) in the test vector suite. 

Now the test driver code has to be executed against a SCSPM 
implementation (PS5) to verify whether its behavior conforms to 
BSI layer specification of GSC-IS. Since we did not have a full-
fledged SCSPM implementation to test against, we ran the generated 
test code against a SCSPM simulator. This test execution generates 
the Actual Output file (AOT). A cross comparator tool then performs 
the process step 6 (PS6) – i.e., generating the test results report by 
comparing the EOT and AOT. 

 

5. CONCLUSIONS 

This paper describes the model-based test generation methodology 
used for generating conformance tests for testing the Basic Services 
Interface (BSI) layer of the Government Smart Card Interoperability 
Specification (GSC-IS). The model for 23 BSI methods resulted in 
306 model paths and the test vector generator generated 692 test 
vectors to cover those model paths. Similar modeling, model 
transformation, test generation, object mapping , test schema and test 
driver generation efforts are underway for developing conformance 
tests for the Virtual Card Edge Interface (VCEI) layer of  GSC-IS. 

6.  REFERENCES 

[1] NIST IR 6887 – 2003 EDITION, “Government Smart Card 
Interoperability Specification”, Version 2.1, July 16, 2003. 
[2] Eric Dalci et al, “ Setup and Process Guide for Conformance 
Testing of Government Smart Card Systems, Basic Service 
Interface, Java Binding, Version 1, Dec 1, 2003. 
[3] E.L.Safford. ”Key applications of Test Automation Framework 
(TAF)”, Proc 12th Annual Software Technology Conference, April 
30 - May 5, 2000. 
[4] C.Heitmeyer, J.Kirby,B.Labaw and R.Bharadwaj. “SCR: A 
toolset for specifying and analyzing software requirements”,Proc. 
10th Annual Conference on Computer-Aided Verification, 
Vancouver, Canada, 1998 
[5] M.R.Blackburn., R.D. Busser, J.S. Fontaine. “Automatic 
Generation of Test Vectors for SCR-Style Specifications”, Proc. 12th 
Annual Conference on Computer Assurance, Gaithersburg, 
Maryland, pages 54-67, June, 1997. 
 


