
LIFE CYCLE INTEGRATION OF MODEL-BASED TESTING TOOLS
Mark Blackburn, Robert Busser, Aaron Nauman, Travis Morgan,

Systems and Software Consortium/T-VEC Technologies, Herndon, Virginia

Abstract
The paper discusses how organizations use

specific model-based tools and evolved their
existing engineering processes to develop and test
large-scale critical applications. It discusses
challenges and best practices observed from the use
of model-based testing tools, and reflects on tool
requirements that are essential for organizational
adoption, including support for requirement-to-test
traceability from requirement management tools,
through requirement and design modeling, model-
based test generation, to automated test execution
and analysis using model-based testing tools that
have qualification evidence to support use on
safety-critical applications.

Introduction
A growing number of mission critical systems

are being developed using model-based tools. These
systems support complex modeling with simulation
capabilities that help modelers better understand the
dynamic aspects of the system, as well as code
generation capabilities for various environments. In
addition, users, customers, and organizations like
the Federal Aviation Administration (FAA) and
Food and Drug Administration (FDA) are
concerned with many issues related to safety,
certification, tool qualification, and how these tools
fit into the overall life cycle of safety-critical
systems development and verification.

Over the past several years, we have had the
opportunity to work with different organizations, in
various application domains, and been involved in
the transition and adoption process of model-based
testing into their organization. There are many
requirements on the organization, users, and
developers of the tools that appear almost
mandatory as part of an effective adoption process.
The completeness of the modeling environment is a
critical element for adoption in many organizations.
Although it often possible to test a subset of an
application using model-based testing,
organizations often resist adoption if a relatively

complete solution is not available during pilot
project trials. The modeling techniques and
languages must be relevant to the applications
under test (e.g., embedded systems with complex
math, avionics, command and control, language
processing, client-server), and support automated
test execution against various languages in different
environments. Finally, the learning curve must be
relatively short, usually fewer than three month, but
with rapid demonstration of the feasibility, usually
within three days.

Scope
This paper is based on lessons learned from

deploying various types of modeling capabilities
since 1996. It uses a case study scenario,
generalized from a company, to describe how
organizations use specific tools to support
requirement analysis, modeling, design for
testability, and testing. It provides guidelines and
recommendations observed from the use of model-
based testing tools, and discusses the benefits,
which include improved requirements and design,
faster test failure analysis, better assessment of
requirement-to-test completeness, and critical
support for project measurement and management.

Life Cycle Support
The integrated environment generically

referred to as the Test Automation Framework
(TAF) integrates government and commercially
available requirement and design modeling tools
with test generation tools [1]. TAF integrates the
DOORS® requirement management tool with the
T-VEC Tabular Modeler (TTM) that supports the
Software Cost Reduction (SCR) method [2] for
requirement modeling. DOORS integrates also with
Simulink®, which supports design-based models,
and TAF integrates requirement models with design
models to provide full traceability from the
requirements source to the generated tests, as
reflected in Figure 1. It integrates also with code

coverage tools produced by LDRA, Rational/IBM
as well as open source tools such as GNU.

TAF has been used on many applications,
some of which are reflected in Table 1 that cover
software unit, integration and system-level testing.
The models typically describe the functional
requirements of a system or component, but

describe also security requirements for a database.
The target implementations range from web-based
to embedded systems on various platforms and
operating systems (OS), and test drivers (aka test
scripts) that were generated to support automated
test execution in many languages and data formats.

SimulinkSimulink

T-VEC SystemTTM/SCR

• Design Capture
• Simulation
• Code Generation

•Static Model Analysis
•Test Generation
•Coverage Analysis
•Test Driver Generation
•Test Results Analysis

• Requirements Capture
• Bridge From Informal Requirements to

Formal Design

Simulink
Tester

Simulink
Tester

Requirements/Design Capture
Captured Model Translation

DOORS

Figure 1. TAF Integrated Environment

Table 1. Application Summary
Application Level System/Component OS Test Langauge

Database security System Oracle Win2K, XP Perl/Java/JDBC

Smart card interoperability System Reference implementation Win2K, XP Java
SQL extension language processing System Parallel Database Win2K SQL extension
Copier/printer feature processing System Custom hardware Unix XML

Client-server web application System Web-to-database Win2K/IE Winrunner

Client-server System Tracking and certification Win2k/CISC DynaComm

Distributed billing system System Custom application Unix Perl
Umanned vehicles System Brake control Unknown VB-like
Mars polar lander Software unit Touch down monitor Win2K C
Command control for ship System System monitor Unix Slang script
Medical devices Intergration Mode switch Unix/custom C-like (custom)
Medical devices Intergration Monitoring and method selection Custom Custom
Medical devices Intergration Internal management Unix/custom C-like (custom)
Flight guidance mode logic Unit/integration Mode logic Custom Java
Avionics monitoring System Cruise energy management Custom SWAT (custom)
Mission management System Stores management Custom SWAT (custom)
Sonar Unit/integration Mode control Custom HTML
Utility Unit Transfer time conversion Unix C
Time card processing System Time card rules processing Win2K, XP Data file

Case Study and Problem Context
This case study discusses the application of

TAF during a multi-year time period to create an
engineering approach to model-based testing that
starts with the system engineers that develop the

requirement and interface specifications, to the
design team that constructs more testable system
and components, to the test engineering
organization, quality assurance organization that
interfaces with the certification authority, and the
organization that develops and maintains that

engineering infrastructure. This case study provides
details related to organizing models to support
multi-team development and other related benefits.

The information presented in this section is
generic. Several different companies’ technical
specifications were examined from Internet
information and patent summaries to ensure the
following information is presented in a product
neutral form.

Like many companies that build high
assurance life critical applications, zero defects is a
requirement. The cost of the verification and
validation (V&V) efforts for these companies often
exceed fifty percent of the total effort, and the
company discussed in this case study did confirm
that its testing cost was significantly higher than
fifty percent of the life cycle cost. In addition, the
complexity of its systems continues to increase,
along with greater scrutiny from the certification
authorities such as the FAA and FDA, but the
competitive market pressure means these high
assurance requirements must be satisfied in
increasingly shorter time periods.

This company uses advanced testing facilities
including simulators, emulations, breadboard and
hardware test environments, with comprehensive
test analysis, measurement, tracking, reporting and
logging capabilities. It is desirable to reduce the
cost of testing, but schedule reduction is the most
critical need in order to remain competitive in the
market place. Most testing prior to the use of TAF
was performed using manually produced test scripts
that support fully automated test execution and
results analysis. Even with this significant V&V
support, the time and cost to create test cases (i.e.,
the test design process), and then implement those
test designs into various scripting languages is labor
intensive, time-consuming, and costly. The
criticality of the systems requires them to perform
comprehensive reviews of test procedures that can
be several hundreds of lines of code. For any small
product there can be over one thousand test scripts
required to fully verify the product.

If a change is made to a product after it has
been released to the field, for any regression testing
need, the entire test suite must be re-executed.
Often due to complex timing requirements, test
scripts that might work for one release of a product
might not work after a modification has been made

to the system; such tests must be re-assessed,
corrected or re-implemented, re-reviewed, and then
re-executed. If common changes are required, such
changes could require re-editing of hundreds of test
scripts.

There are advantages to a comprehensive
simulation and test infrastructure, but the
sophisticated and the wide-spectrum set of
application program interfaces (APIs) for
controlling simulations sometimes provide far too
many options for test designers and can lead to
reduced robustness of the test scripts, especially
since different simulation APIs have different
timing characteristics; that is the timing of one
sequence of API calls can vary by a few
milliseconds from another set, even though they
might achieve the same function.

Receiving certification approval is a critical
and time-consuming part of product release. If the
certification authority could be convinced that the
TAF approach provides the verification rigor
needed for certification and will allow the TAF
verification results to be submitted as justification
for approval, then the company will improve its
ability to deliver complex systems with certification
approval in a more cost effective manner.

Phased Implementation of TAF
This case study takes a chronological

perspective as the integration of the entire model-
based method that impacted many different
organizations within this company. There were four
distinct phases of involvement with this company.
The effort started with a very small thread of
functionality and transitioned into one of the most
complex control mechanism that is common in
many similar products. These successful
demonstrations lead to the application of TAF on
two different product-lines, and involved
coordination with the design team, system
engineering that wrote the product technical
specification, test team, and the quality assurance
organization involved in certification and tool
qualification.

Many of the products this company develops
tend to have a common data flow as conceptually
represented in Figure 2. In real-time on a periodic
basis, the product usually performs some sensing

function, while capturing information, and checks
that information against some stored information
within the product that is usually set by a user.
Based on the information, usually collected and
filtered over time, algorithms select options to issue
responses or controls on the product. These
products continue to evolve over time, and some
users prefer different algorithms. It is common for
functions such as Check to have many different

types and combination of filtering, matching, and
selection possibilities. A new combination is often
called a feature when it is presented to a user,
however the feature can impact many components
within a system. This case study discusses the
organizational and process impacts of developing a
feature for the Check component that impacts
Filter, Match, and Select.

Filter Match Select

Sense Check DeliverSense Check Deliver

Well-Defined Interfaces
Supports direct

controllability and
observability for component

Coupled Interfaces
Complicates access to component

and limits controllability that requires
test inputs to be provided upstream

Key

-Well-defined Interface

- Coupled Interface

Figure 2. Conceptual Component of Example System

Prior to the engagement with the TAF team, as
reflected in Figure 2, the components of the Check
function were not partitioned with well-defined
interfaces, rather the functionality was coupled,
which made testing the functionality in each
subcomponent (i.e., Filter, Match, and Select) more
difficult. However, there is a verification
requirement to demonstrate that every thread
through a component or subcomponent is
completely tested. Tight coupling makes this
requirement difficult to achieve and demonstrate.

Phase I was a short pilot project effort to
demonstrate the feasibility of applying model-based
testing. During this phase, we applied the
conceptual modeling process shown in Figure 3.
We were able to quickly (i.e., approximately two
hours) develop a model, map test drivers to the test
environment, execute a test against a project, and
find a minor problem with the memory mapping for
the incoming message from the product. This
encouraged the company to progress to Phase II.

Test Vector
Generator

Test Driver
Generator

TAF Model
Translator

Model

Test Environment

Tester
(Modeler)

Requirements
Engineer

Designer/Implementer

Design
spec

Requirements
specification

Test Result
Analyzer

Test results
compared

against
expected results

Test driver is generated
from translated model

and generated tests and
executes in test

environment

Test engineer builds model to
capture required behavior

and logical variations of data
and control

Test driver object
mappings relate

model variables to
API services

Test Driver
Object Mappings

Figure 3. Modeling Process

Improved Test Infrastructure
Phase II was a challenging problem, because

the model characterized a well-defined, but
arguably one of the most complex control
mechanisms of the entire product. We modeled
approximately 130 requirement threads. The
modeling process helped illustrate problems and
anomalies, nothing serious, with documentation
including the technical specification and interface
specifications, which were maintained separately.
However, the key issues arose when we created the
object mappings to support automated test driver
generation.

The test infrastructure was very robust, and
used by both testers and developers. Test scripts
were written in C++ in a Microsoft development
environment and an extensive set of API services
provided numerous ways to integrate different
software versions simulators or target
environments. The API services permitted program
control for all interfaces to the product including the
environment, but unfortunately, the API services
had become feature rich with many overlapping
functions. It was often difficult to understand how
to initialize the simulation for a particular
subsystem of features, and was difficult to uncover
the functions necessary to setup consistent control
of the simulator. These same problems plagued test
engineers, especially less experienced engineers,
because there were several hundred API services to
support testing, and many different requirements for
initializing different test environments, for various
different types of product features.

We were able to work with key people that
helped develop the test infrastructure and simulator
to successfully build test drivers for the modeled
requirements. We isolated the best services to
accomplish the task and used those to produce the
generated test drivers. More importantly, the efforts
caused an initiative within the company to
completely re-design the entire set of API services
for the user community. The set of APIs were
simplified and reduced down to about one quarter
of the original number.

Requirement Analysis
The success of Phase II permitted us to move

on to a new feature that was to be implemented in
an existing product, which is referred to as Phase
III. Originally this feature was going to be included
in the next generation product, but a competitor was
including this feature in their product. This market
pressure forced this company to include this feature
in an existing product.

The modeling started nearly in parallel to the
design and implementation process. This permitted
more continuous testing during development and
allowed for early analysis of the technical
specifications. We applied interface-driven
requirement modeling that starts early during the
requirement and design phase. This has been
demonstrated to help in creating a more testable
design and improving the requirement and interface
specifications.

This company uses a two-phased release
process of a technical requirement specification.
During the first phase, the technical specification is
under configuration control but can be evolved,
reviewed and changed without official approval
from a change control board. After the specification
is released, a change control board must approve all
changes, which increases the time and effort.

Fortunately, the modeling process started from
a technical specification that had not been officially
released. This was an exception to the typical
testing process, because testing normally starts
much later in the development process. However,
during the process of modeling the requirement
specification, about 100 specification problems
were uncovered. All of these issues were discussed,
and resolved, with the system engineers that
developed the technical specification prior to the
change control board. This intangible benefit of the
model-based testing effort saved cost and effort by
uncovering these issues, not to mention that the
early resolution of the issues saved the designers
time and effort from making potentially bad design
choices due to issues in the requirement
specification.

Design for Testability
Another issue that surfaced during Phase II

was addressed during Phase III. As reflected in

Figure 2, the functionality in the existing system
was tightly coupled due to numerous reasons
related to power consumption and memory space
limitations of the product. The interfaces between
Filter, Match and Select were not well-defined. This
complicated the testing process, requiring many
tests to be initiated from higher levels in the system,
such as Check because some of the inputs could be
set upstream from the Check component. In
addition, the outputs from the function such as
Match were not visible. This made systematic and
comprehensive testing of these lower-level
components very difficult. Normally, to ensure
coverage of the threads through the implementation
of these lower-level components means increased
testing from the high-level components, and
sometime the number of tests can increase by an
order of magnitude.

This effort started early enough that the
designers were able to expose input and output
interfaces, including internal state information to
increase the testability significantly. Approximately
80 percent of the functionality was tested with
improved interface support provided by the design
team. The other 20 percent of the component
elements could not be changed due to performance
impacts, and re-testing effort. This significantly
reduced the complexity of the model and tests, and
provided greater test coverage with fewer tests to
reduce time and cost.

This design for testability philosophy was
applied to another product in Phase IV. The Phase
IV effort involved another older product that was to
be replaced by another new product, but again due
to market pressure by a competing product, a

feature was added to an older product. The success
on Phase III provided substantial evidence for
repeating the effort on Phase IV.

Modular Requirement Specifications
This company has some of the best technical

specifications and interface documentation of any
member company, however we identified during
the modeling process a reason for organizing the
specifications in a different way. As shown in
Figure 4, the company documents the interface
specification separate from the requirement
specification. Although this is over simplified,
conceptually one team member specified a model
for the requirements in Section 1.1. A second team
member made the model for Section 1.2, and
another made a model for Section 1.3 of the
requirement specification. The issue that emerged
during the modeling process of Section 1.4, which
describes feature interaction requirements between
Filter, Match, and Select, is that many of these
features described conditions that were already
defined in a model. Because these modeled
requirements had undergone the review process,
and all the tests generated from these models were
complete, with passing status, the decision was
made to develop a separate model for the
requirements of Section 1.4. The problem however,
is that many overlapping or related conditions were
already defined in the other models, and rather than
reusing existing model elements, the choice was
made to produce a separate model. In addition,
models make it visible when related information
that should be grouped together is separated.

Filter Match SelectFilter Match Select

Interfaces

Section 1.1 Section 1.2 Section 1.3

Section 1.4

Requirements

Figure 4. Organization of Requirement Feature

Fortunately, the TAF team had created, at the
request of other TAF users, a model-include
mechanism that allowed the Feature Interactions
model, associated with Section 1.4, to include the
Filter, Match, and Select models, so that existing
model functionality could be reused, as shown in
Figure 5. If conditions change in the future, the
changes can and should be made in a single place.
Just as it is a good practice to separate the interface
specification in code (e.g., in a .h include file for the
C programming language), it is a good practice to
specify component interfaces separately. Figure 5

illustrates how common models represented
interfaces separate from the required behavior. If
the interface is related to the requirements, the
interface model can be included with the model
behavior. This practice is important, because if the
interface changes, the changed interface is isolated
in one place. Interface models tend to correspond
with object mappings that represent the interface to
the implementation. More details on common
object mappings and test infrastructure are
discussed below.

Filter Match SelectFilter Match SelectFilter Match Select

Filter (Section 1.1) Match (Section 1.2) Select (Section 1.3)

Feature Interactions (Section 1.4)

Figure 5. Models Represent Interfaces and Required Behavior

Finally, an important guideline, pointed out to
the system engineers and specification team, is that
the specification of the requirements should be
associated with outputs used to assess the
verification of the requirements. That means the
requirement describing the interactions between
components should be specified in the appropriate
sections in Sections 1.1 through 1.3 as they relate to
the interfaces of Filter, Match, and Select.

Model-Based Review Process
Companies that develop safety critical

applications are often required to have code reviews
as well as test procedure reviews. This company’s
existing process often required reviews of hundreds
of test scripts that may have hundreds of lines of
code. The new process relied on using validated
TAF tools that satisfied the quality assurance
organization’s criteria for proper tool operation; this
meant that the quality assurance organization
believed that the tools would produce test vectors
and test drivers that were complete and correct with

respect to the model of the requirements. This
permitted the review process to change.

The new process involved a review of the
model by the system engineers to ensure the
completeness and correctness with respect to the
requirements. All requirements used the
requirement traceability mechanism of the TAF
tools to link the requirements to the generated test
vectors. The second part of the process involved the
designer/implementers, who reviewed the models
and the associated test vectors presented in matrix
format. The review of the model for the associated
requirements that were directly traced to the
requirements was much easier to understand and
verify than the test drivers for the model.

Design decisions, implemented in code, result
often in undocumented implementation-derived
requirements. These implementation-derived
requirements must be tested too. An important
addition of the TAF process is that the designers
were able to request the addition of a special type of
model information called a “test constraint” for the

implementation-derived requirements. A test
constraint results in additional tests, in addition to
the requirement-based tests to support
implementation-derived requirements. This further
reduces the unit testing effort typically performed
by the developer. Because tests were now being run
in parallel to development, the implementers work
effort was reduced. This however, would not have
been possible without the designer providing
additional test interfaces at the lower-level
components.

The early interaction between the designers
and test engineers improved the interfaces for
testability, provided continuous testing earlier to
reduce unit testing by the designers/implementers,
and reduced the complexity of the testing to achieve
more comprehensive test coverage with a reduced
set of model-based tests.

Multi-team Model and Test Infrastructure
There are often significant skill and knowledge

differences within an organization, and as discussed
in previous sections, we relied on knowledgeable
individuals to recommend simulation API services
for scripting tests and for initializing the test
environment in order to automate test execution.
These knowledgeable individuals were better able
to recommend specific services to carry out the
functions to control the simulation. The test
infrastructure for model based testing can be

engineered to provide significant reuse of model
interfaces and their associated object mappings, by
leveraging the most knowledgeable resources
within a company.

Figure 6 illustrates the two roles involved in
the backend aspects of model-based testing. This is
the process where modeled variables more closely
related to the requirements must be mapped to the
physical mechanisms that are used to set inputs
(i.e., inject test inputs) and get outputs. The two
roles include the Modeler and the Test Automation
Architecture (who often plays a modeling role too).
In this company, there was one test automation
architect for all of the modelers supporting the
Phase III and Phase IV effort. This one individual
tailored and evolved the test driver schema to
operate with two completely different testing
environments and languages. The schema provided
common reporting and execution mechanisms all
based on the same framework, which is shown in
Figure 7. The test automation architecture controls
also the common object mappings that correspond
to the common component interfaces. A modeler
that might not know as much about the details on
the test environment can focus on building the
models from the requirements and then be directed
to reference common object mappings in order to
produce test drivers for all of the modeled
functionality that works with the concrete interfaces
of the actual target systems or simulation.

Test Drivers

Test Driver
Generator

Test Driver Schema & Utilities

…Test Automation
Architect

Global init;
Forall tests

init target;
init output;
set inputs;
execute SUT;
get outputs;
store output;

endforall

Test Driver Schema

Common Object
Mappings

Specific Object
Mappings

Test Engineers
(Modelers)

…

Figure 6. Roles in Test Driver Development

As shown in Figure 7 a modeler defines one
object mapping for each output defined in a model.
Within the object mapping, references are made to
directory paths such as <HOME> that is assigned
the project path (e.g., \TAF\course). From that
<HOME> user-defined variable other information
is referenced such as the location of the schema
(e.g., <SCHEMA_HOME> =
'<HOME>\test_driver_utilities'), which is where the
test automation architecture provides common
scripting utilities for reporting and logging,
common initializations and declarations related to
initializing the test environment, along with a
common schema and common mapping file. The

common mapping file (i.e., common.map) includes
other common information that is pertinent to all
modelers such as messages, literals, inputs, flags,
and other variables. If an interface changes for
some input, it is changed in one location (i.e., the
inputs.map object mapping file), and all models that
reference that input variable have a test driver
interface that uses the API for setting that input
variable. When such a change occurs, all test
drivers can be regenerated to use the new interface.
This avoids the problem in the current approach
were every test script that references the input
variable must be modified manually through some
type of editing process.

operation.MAP

<subsystemName> = 'operation';
<HOME> = '\TAF\course';
<SCHEMA_HOME> = '<HOME>\test_driver_utilities';
EMBED_PERL '<SCHEMA_HOME>\perl.pl';
INCLUDE '<SCHEMA_HOME>\inits_and_declarations.map';
INCLUDE '<SCHEMA_HOME>\schema.sch';
INCLUDE '<SCHEMA_HOME>\common.map';

schema

common.MAP

inits_and_declarations.MAP

messages.map
literals.map
inputs.map
flags.map
vars.map

Modeler

Test Automation Architect
Figure 7. Test Infrastructure Organization

During both Phase III and Phase IV, the
simulation environment, test infrastructure,
component interfaces and reporting requirement
continued to evolve. The test automation architect
through updates to common object mappings, the
schema, or utilities managed all of these changes in
a way that was transparent to the other modelers.

Model-Based Measurement
During the beginning of Phase IV, which was

about the middle of the Phase III project, we
recognized that we had information and the need for
using TAF measurement information to support
project measurement [3]. Figure 8 provides a

perspective on the key measurement information
and how it relates to TAF requirements modeling.
With this approach, there are four key base
measures. System engineers are responsible for
producing requirements, which results in the base
measure number of requirements. A test engineer or
modeler works in parallel with developers to refine
requirements and build models to support iterative
testing and development. Modeling introduces
model variables, and this results in the base
measure number of variables. After model
translation and processing, the model requirements
are converted into requirement threads, which is a
base measure related to requirements. Finally, to
support test driver generation, and test execution

and results analysis, the base measure number of
object mappings is used.

This measurement-related information helped
managers and project leads predict schedule
duration and estimate project completion dates.
Historical measurement information can be used
prior to the start of a project, but it also is important
to use data derived during the project.

Completed Project Ahead of Schedule
This company stated prior to the use of TAF

that testing was more than 50% of their effort.
Using model-based testing they completed the

development and verification 9 weeks ahead of
schedule. That had never occurred before.

Significant Reduction in Re-Testing
The company stated that after an experimental

field trial of a product, they had to make changes
and then completely re-test the entire product. They
claimed that the TAF models and tests developed
for the initial release, they were able to complete all
testing 5 times faster as compared to their existing
script-based testing process.

 Raw Data Derived Measures Indicators

Test Vector
Generator

Test Driver
Generator

TAF Model
Translator

Model

Tester/Modeler

Requirements
Analyst

Requirements
specification

Number of
Requirements

Requirement
Threads

Number of
Variables

Number of
Object mappings

DCP Rate Relationships

0

10

20

30

40

50

60

70

80

1 2 3 4 5 6 7 8 9 10 11 12 13

Current Project Week

D
CP

s Actual DCPs
Average DCP rate

Combined Estimate to Complete

0
5

10
15
20
25
30
35
40
45
50

1 2 3 4 5 6 7 8 9 10 11 12 13

Current Week

W
ee

ks
 to

 C
om

pl
et

e

Estimated Weeks
to Complete Req

Estimated Weeks
to Complete OM

Weekly Number of DCPs

0

10

20

30

40

50

60

70

80

1 2 3 4 5 6 7 8 9 10 11 12 13

Current Project Week

D
CP

s

Base Measures

Figure 8. Process View of TAF Measurement

Guidelines and Recommendations
This section summarizes some of the key

organizational and technical guidelines and
recommendations provided in the case study.
1. Start with pilot projects to support organizational change.

Stakeholders need to see quickly demonstrated evidence
within their organization to commit to use model-based testing
on a scheduled deliverable. It is often good to select a pilot
project from a recently completed project, because the
requirements are often well understood, even if not well
documented. In addition, test cases and test results often exist
that provide a more objective basis for comparison with the
model-based tests.

2. Transition from a pilot project to a thread of an existing
project. Select a thread that is likely to change often or have

features extend it. The most leverage and benefits come from
reusing and evolving one or more related models and the
associated test infrastructure. Select a project prior to the
requirement phase so that modeling can start early and help
improve the requirements, while providing sufficient time to
collaborate with the design team to improve the interfaces to
support testability.

3. Start requirement modeling early to identify requirement
defects sooner to reduce rework cost. Use interface driven
modeling to ensure the component under test has testable
interfaces. Define the requirements for each component in
terms of the known interfaces.

4. Use goal-oriented modeling; work backwards by identifying
each output at the component interfaces. Prioritize the ordering
of the modeling for requirements thread to correspond with the
expected development and/or integration of the component
outputs associated with those requirement threads.

5. Identify and model interfaces separate from behavioral
requirements to maximize the reuse and ensure a single point
of definition for each modeled interface. Include model
references to interfaces for components that are related to the
functional requirements to ensures that the model of an
interface is defined in one place. If changes occur to the
interface, only one model will need to be changed.

6. Capture requirement traceability links in the requirement
models. This provides important information to improve the
review process. Tracing the requirements helps also in
assessing the completeness of the model with respect to a
requirement and related specification documents. Early
modeling can identify incompletenesses in requirement
documents that can be corrected early providing better input to
designers and implementers.

7. Ensure requirement models capture negative cases as well as
the positive cases of a requirement. The negative case can
often uncover problems such as the problem that is the likely
cause of the Mars Polar Lander [4], but also represent
important safety or security cases. Establish modeling
practices such as naming conventions, the use of terms that can
be reused throughout the model, the use of constants, and
traceability links.

8. Model continuously and in parallel with development. This
can reduce testing effort for designers and implementers, and
better ensure the design is testable. This results in an evolving
automated test suite that should be executed for every build
(daily, bidaily, weekly, etc.) of the system. This supports early
identification of bugs that might be introduced by a developer
change, and it makes it easier to understand and isolate the
specific changes that introduced a defect into the system.

9. Extend requirement-based test models by adding tests
constraints to a model to support implementation-derived
requirements identified by the designer or implementer to
reduce the unit testing effort traditionally performed by
implementers.

10. Leverage the expertise of test automation experts, who often
understand the most robust set of services for interfacing with
the test environment as well as details related to initialization.

11. Develop common object mappings that correspond to modeled
interfaces. Ensure that the test driver schema isolates test
environment specifics such as initialization and declaration
that can be controlled by the test automation expert. Develop
and evolve one test driver schema per environment.
Coordinate effort through a lead test automation expert that
leverages common logging, reporting, configuration
management and measurement support. Ensure the test driver
schema maps requirement identifiers to test scripts for more
efficient test failure analysis.

12. For more complex systems, analyze the interfaces, API, and
requirement dependencies to ensure proper design of models
that should be associated with test driver object mappings.
This can maximize the reuse of common interface models and
object mapping definitions to reduce cost and maintenance,
and can reduce effort related to test sequencing.

Conclusion, Results and Benefits
The case study provides examples that

summarize some of the benefits of model-based
testing. The following provides a few other member
company remarks that provide some perspective on
the tangible as well as the intangible ROI associated
with model-based test engineering.

One company stated there are many tangible
benefits from model-based testing, but surprisingly,
there are several intangible ROI benefits. At the end
of the pilot demonstration the process and the
supporting test infrastructure was 80-90% complete
and relatively stable to support all follow-on testing.
In addition, they identified several requirements for
the testing infrastructure that could further automate
the process or change the underlying process for the
organization. For example: once an automated test
suite exists, it can be run each time a build of the
system occurs, this allows bugs to be identified by
the developers much earlier in the development
process, and it makes it easier to understand the
specific changes that introduced a defect into the
system rather than waiting weeks or months before
manual testing is performed.

Lockheed Martin has used the TAF for many
years [5], and has contributed significantly to the
evolution and usage requirements including this
release citation:
1. Some of the areas we have applied the TAF technology are in

the Vehicle Systems Flight Control Laws, the Mission
Systems Middleware, Digital Radio Controls, Auto Logistics
AFB Basing and Flight Ops, Branch Health and Mode
Determination software testing, and Reliability Enhancement
and Re-engineering Program (RERP) Design and Test. These
applications have been applied to various elements of multiple
programs that include JSF/F-35, F2, and C5. Prior pilot
applications performed on T-50 and F-16 showed applicability
to legacy programs and would be beneficial in future upgrades
to existing programs.

2. Applications on future upgrades to existing program that have
extensive tabular formatted requirements have been identified
as highly adaptable to the TAF technology through the use of
TTM and T-VEC.

3. On one application related to Flight Control LAWS (Safety
Critical software) it was determined that the application of
TAF would significantly reduce the test efforts related to each
release of the software. Typically there would be 6-12 releases
for each version of this software with a total savings greater
than six million dollars just in the test effort portion. Even
more important would be the reduction in schedule time for
the releases, which would result in greater dollar savings
related to other personnel supporting the efforts.

4. In one experience we discovered some critical errors (such as
potential divide by zero) during the design effort that would
not have been caught until the test phase of the development
and in some cases may not have been detected until much later
when these unique conditions were met. In another experience
we discovered an error, early in the development cycle, with
the code generation tool being used. Benefit analysis on
software development shows that the cost of resolving these
errors grows exponentially as they move through the
development phases. The actual cost savings of these can only
be imagined but definitely go into the millions for our type
software.

Conclusion
Model-based testing impacts the entire life

cycle, and has been demonstrated to apply to many
types of applications, such as embedded systems,
language processing, client-server and web systems,
distributed processing systems, command, control
and monitoring, information processing business
logic (IT systems), database, security, smart cards,
and life critical systems such as medical devices
and avionics systems. It has helped many
organizations improve the requirements, drive
improvements in the design of the target system and
simulators, improve the test infrastructure with
design for testability, guide the creation of modular
requirement specifications, and demonstrate the
cost benefits of modeling requirements early, with
significant reduction in cost and schedule.

We have helped organizations in the adoption
process, including the structuring of a multi-team
modeling and test infrastructure, recommended
model-based review practices, created tailored

training, and shown how to use model-based
measurement for project management.

References
[1] Blackburn, M.R., R.D. Busser, A.M., Nauman,
Interface-Driven, Model-Based Test Automation,
CrossTalk, The Journal of Defense Software
Engineering, May 2003.

[2] Alspaugh, T.A., S.R. Faulk, K.H. Britton, R.A.
Parker, D.L. Parnas, and J.E. Shore. Software
requirements for the A-7E aircraft, Tech. Rep.
NRL/FR/5546-92-9194. Washington, D.C.: Naval
Research Lab, 1992.

[3] Blackburn, M.R., R.D. Busser, A.M., Nauman,
Objective Measures from Model-Based Testing,
STAREAST, May 2004.

[4] Blackburn, M.R., R.D. Busser, A.M. Nauman,
R. Knickerbocker, R. Kasuda, Mars Polar Lander
Fault Identification Using Model-based Testing,
Eighth IEEE International Conference on
Engineering of Complex Computer Systems,
December 2002.

[5] Kelly, V. E.L. Safford, M. Siok, M. Blackburn,
Requirements Testability and Test Automation,
Lockheed Martin Joint Symposium, June 2001.

24th Digital Avionics Systems Conference
October 30, 2005

