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Abstract 
The paper discusses how organizations use 

specific model-based tools and evolved their 
existing engineering processes to develop and test 
large-scale critical applications. It discusses 
challenges and best practices observed from the use 
of model-based testing tools, and reflects on tool 
requirements that are essential for organizational 
adoption, including support for requirement-to-test 
traceability from requirement management tools, 
through requirement and design modeling, model-
based test generation, to automated test execution 
and analysis using model-based testing tools that 
have qualification evidence to support use on 
safety-critical applications. 

Introduction 
A growing number of mission critical systems 

are being developed using model-based tools. These 
systems support complex modeling with simulation 
capabilities that help modelers better understand the 
dynamic aspects of the system, as well as code 
generation capabilities for various environments. In 
addition, users, customers, and organizations like 
the Federal Aviation Administration (FAA) and 
Food and Drug Administration (FDA) are 
concerned with many issues related to safety, 
certification, tool qualification, and how these tools 
fit into the overall life cycle of safety-critical 
systems development and verification.  

Over the past several years, we have had the 
opportunity to work with different organizations, in 
various application domains, and been involved in 
the transition and adoption process of model-based 
testing into their organization. There are many 
requirements on the organization, users, and 
developers of the tools that appear almost 
mandatory as part of an effective adoption process. 
The completeness of the modeling environment is a 
critical element for adoption in many organizations. 
Although it often possible to test a subset of an 
application using model-based testing, 
organizations often resist adoption if a relatively 

complete solution is not available during pilot 
project trials. The modeling techniques and 
languages must be relevant to the applications 
under test (e.g., embedded systems with complex 
math, avionics, command and control, language 
processing, client-server), and support automated 
test execution against various languages in different 
environments. Finally, the learning curve must be 
relatively short, usually fewer than three month, but 
with rapid demonstration of the feasibility, usually 
within three days.  

Scope 
This paper is based on lessons learned from 

deploying various types of modeling capabilities 
since 1996. It uses a case study scenario, 
generalized from a company, to describe how 
organizations use specific tools to support 
requirement analysis, modeling, design for 
testability, and testing. It provides guidelines and 
recommendations observed from the use of model-
based testing tools, and discusses the benefits, 
which include improved requirements and design, 
faster test failure analysis, better assessment of 
requirement-to-test completeness, and critical 
support for project measurement and management.  

Life Cycle Support 
The integrated environment generically 

referred to as the Test Automation Framework 
(TAF) integrates government and commercially 
available requirement and design modeling tools 
with test generation tools [1]. TAF integrates the 
DOORS® requirement management tool with the 
T-VEC Tabular Modeler (TTM) that supports the 
Software Cost Reduction (SCR) method [2] for 
requirement modeling. DOORS integrates also with 
Simulink®, which supports design-based models, 
and TAF integrates requirement models with design 
models to provide full traceability from the 
requirements source to the generated tests, as 
reflected in Figure 1. It integrates also with code 



coverage tools produced by LDRA, Rational/IBM 
as well as open source tools such as GNU. 

TAF has been used on many applications, 
some of which are reflected in Table 1 that cover 
software unit, integration and system-level testing. 
The models typically describe the functional 
requirements of a system or component, but 

describe also security requirements for a database. 
The target implementations range from web-based 
to embedded systems on various platforms and 
operating systems (OS), and test drivers (aka test 
scripts) that were generated to support automated 
test execution in many languages and data formats.
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Figure 1. TAF Integrated Environment 

Table 1. Application Summary 
Application Level System/Component OS Test Langauge

Database security System Oracle Win2K, XP Perl/Java/JDBC

Smart card interoperability System Reference implementation Win2K, XP Java
SQL extension language processing System Parallel Database Win2K SQL extension
Copier/printer feature processing System Custom hardware Unix XML

Client-server web application System Web-to-database Win2K/IE Winrunner

Client-server System Tracking and certification Win2k/CISC DynaComm

Distributed billing system System Custom application Unix Perl
Umanned vehicles System Brake control Unknown VB-like
Mars polar lander Software unit Touch down monitor Win2K C
Command control for ship System System monitor Unix Slang script
Medical devices Intergration Mode switch Unix/custom C-like (custom)
Medical devices Intergration Monitoring and method selection Custom Custom
Medical devices Intergration Internal management Unix/custom C-like (custom)
Flight guidance mode logic Unit/integration Mode logic Custom Java
Avionics monitoring System Cruise energy management Custom SWAT (custom)
Mission management System Stores management Custom SWAT (custom)
Sonar Unit/integration Mode control Custom HTML
Utility Unit Transfer time conversion Unix C
Time card processing System Time card rules processing Win2K, XP Data file  

Case Study and Problem Context 
This case study discusses the application of 

TAF during a multi-year time period to create an 
engineering approach to model-based testing that 
starts with the system engineers that develop the 

requirement and interface specifications, to the 
design team that constructs more testable system 
and components, to the test engineering 
organization, quality assurance organization that 
interfaces with the certification authority, and the 
organization that develops and maintains that 



engineering infrastructure. This case study provides 
details related to organizing models to support 
multi-team development and other related benefits.  

The information presented in this section is 
generic. Several different companies’ technical 
specifications were examined from Internet 
information and patent summaries to ensure the 
following information is presented in a product 
neutral form.  

Like many companies that build high 
assurance life critical applications, zero defects is a 
requirement. The cost of the verification and 
validation (V&V) efforts for these companies often 
exceed fifty percent of the total effort, and the 
company discussed in this case study did confirm 
that its testing cost was significantly higher than 
fifty percent of the life cycle cost. In addition, the 
complexity of its systems continues to increase, 
along with greater scrutiny from the certification 
authorities such as the FAA and FDA, but the 
competitive market pressure means these high 
assurance requirements must be satisfied in 
increasingly shorter time periods. 

This company uses advanced testing facilities 
including simulators, emulations, breadboard and 
hardware test environments, with comprehensive 
test analysis, measurement, tracking, reporting and 
logging capabilities. It is desirable to reduce the 
cost of testing, but schedule reduction is the most 
critical need in order to remain competitive in the 
market place. Most testing prior to the use of TAF 
was performed using manually produced test scripts 
that support fully automated test execution and 
results analysis. Even with this significant V&V 
support, the time and cost to create test cases (i.e., 
the test design process), and then implement those 
test designs into various scripting languages is labor 
intensive, time-consuming, and costly. The 
criticality of the systems requires them to perform 
comprehensive reviews of test procedures that can 
be several hundreds of lines of code. For any small 
product there can be over one thousand test scripts 
required to fully verify the product. 

If a change is made to a product after it has 
been released to the field, for any regression testing 
need, the entire test suite must be re-executed. 
Often due to complex timing requirements, test 
scripts that might work for one release of a product 
might not work after a modification has been made 

to the system; such tests must be re-assessed, 
corrected or re-implemented, re-reviewed, and then 
re-executed. If common changes are required, such 
changes could require re-editing of hundreds of test 
scripts. 

There are advantages to a comprehensive 
simulation and test infrastructure, but the 
sophisticated and the wide-spectrum set of 
application program interfaces (APIs) for 
controlling simulations sometimes provide far too 
many options for test designers and can lead to 
reduced robustness of the test scripts, especially 
since different simulation APIs have different 
timing characteristics; that is the timing of one 
sequence of API calls can vary by a few 
milliseconds from another set, even though they 
might achieve the same function. 

Receiving certification approval is a critical 
and time-consuming part of product release. If the 
certification authority could be convinced that the 
TAF approach provides the verification rigor 
needed for certification and will allow the TAF 
verification results to be submitted as justification 
for approval, then the company will improve its 
ability to deliver complex systems with certification 
approval in a more cost effective manner. 

Phased Implementation of TAF 
This case study takes a chronological 

perspective as the integration of the entire model-
based method that impacted many different 
organizations within this company. There were four 
distinct phases of involvement with this company. 
The effort started with a very small thread of 
functionality and transitioned into one of the most 
complex control mechanism that is common in 
many similar products. These successful 
demonstrations lead to the application of TAF on 
two different product-lines, and involved 
coordination with the design team, system 
engineering that wrote the product technical 
specification, test team, and the quality assurance 
organization involved in certification and tool 
qualification.  

Many of the products this company develops 
tend to have a common data flow as conceptually 
represented in Figure 2. In real-time on a periodic 
basis, the product usually performs some sensing 



function, while capturing information, and checks 
that information against some stored information 
within the product that is usually set by a user. 
Based on the information, usually collected and 
filtered over time, algorithms select options to issue 
responses or controls on the product. These 
products continue to evolve over time, and some 
users prefer different algorithms. It is common for 
functions such as Check to have many different 

types and combination of filtering, matching, and 
selection possibilities. A new combination is often 
called a feature when it is presented to a user, 
however the feature can impact many components 
within a system. This case study discusses the 
organizational and process impacts of developing a 
feature for the Check component that impacts 
Filter, Match, and Select. 

Filter Match Select
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- Coupled Interface
 

Figure 2. Conceptual Component of Example System

Prior to the engagement with the TAF team, as 
reflected in Figure 2, the components of the Check 
function were not partitioned with well-defined 
interfaces, rather the functionality was coupled, 
which made testing the functionality in each 
subcomponent (i.e., Filter, Match, and Select) more 
difficult. However, there is a verification 
requirement to demonstrate that every thread 
through a component or subcomponent is 
completely tested. Tight coupling makes this 
requirement difficult to achieve and demonstrate. 

Phase I was a short pilot project effort to 
demonstrate the feasibility of applying model-based 
testing. During this phase, we applied the 
conceptual modeling process shown in Figure 3. 
We were able to quickly (i.e., approximately two 
hours) develop a model, map test drivers to the test 
environment, execute a test against a project, and 
find a minor problem with the memory mapping for 
the incoming message from the product. This 
encouraged the company to progress to Phase II. 
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Figure 3. Modeling Process



Improved Test Infrastructure 
Phase II was a challenging problem, because 

the model characterized a well-defined, but 
arguably one of the most complex control 
mechanisms of the entire product. We modeled 
approximately 130 requirement threads. The 
modeling process helped illustrate problems and 
anomalies, nothing serious, with documentation 
including the technical specification and interface 
specifications, which were maintained separately. 
However, the key issues arose when we created the 
object mappings to support automated test driver 
generation. 

The test infrastructure was very robust, and 
used by both testers and developers. Test scripts 
were written in C++ in a Microsoft development 
environment and an extensive set of API services 
provided numerous ways to integrate different 
software versions simulators or target 
environments. The API services permitted program 
control for all interfaces to the product including the 
environment, but unfortunately, the API services 
had become feature rich with many overlapping 
functions. It was often difficult to understand how 
to initialize the simulation for a particular 
subsystem of features, and was difficult to uncover 
the functions necessary to setup consistent control 
of the simulator. These same problems plagued test 
engineers, especially less experienced engineers, 
because there were several hundred API services to 
support testing, and many different requirements for 
initializing different test environments, for various 
different types of product features. 

We were able to work with key people that 
helped develop the test infrastructure and simulator 
to successfully build test drivers for the modeled 
requirements. We isolated the best services to 
accomplish the task and used those to produce the 
generated test drivers. More importantly, the efforts 
caused an initiative within the company to 
completely re-design the entire set of API services 
for the user community. The set of APIs were 
simplified and reduced down to about one quarter 
of the original number. 

Requirement Analysis 
The success of Phase II permitted us to move 

on to a new feature that was to be implemented in 
an existing product, which is referred to as Phase 
III. Originally this feature was going to be included 
in the next generation product, but a competitor was 
including this feature in their product. This market 
pressure forced this company to include this feature 
in an existing product. 

The modeling started nearly in parallel to the 
design and implementation process. This permitted 
more continuous testing during development and 
allowed for early analysis of the technical 
specifications. We applied interface-driven 
requirement modeling that starts early during the 
requirement and design phase. This has been 
demonstrated to help in creating a more testable 
design and improving the requirement and interface 
specifications. 

This company uses a two-phased release 
process of a technical requirement specification. 
During the first phase, the technical specification is 
under configuration control but can be evolved, 
reviewed and changed without official approval 
from a change control board. After the specification 
is released, a change control board must approve all 
changes, which increases the time and effort. 

Fortunately, the modeling process started from 
a technical specification that had not been officially 
released. This was an exception to the typical 
testing process, because testing normally starts 
much later in the development process. However, 
during the process of modeling the requirement 
specification, about 100 specification problems 
were uncovered. All of these issues were discussed, 
and resolved, with the system engineers that 
developed the technical specification prior to the 
change control board. This intangible benefit of the 
model-based testing effort saved cost and effort by 
uncovering these issues, not to mention that the 
early resolution of the issues saved the designers 
time and effort from making potentially bad design 
choices due to issues in the requirement 
specification. 

Design for Testability 
Another issue that surfaced during Phase II 

was addressed during Phase III. As reflected in 



Figure 2, the functionality in the existing system 
was tightly coupled due to numerous reasons 
related to power consumption and memory space 
limitations of the product. The interfaces between 
Filter, Match and Select were not well-defined. This 
complicated the testing process, requiring many 
tests to be initiated from higher levels in the system, 
such as Check because some of the inputs could be 
set upstream from the Check component. In 
addition, the outputs from the function such as 
Match were not visible. This made systematic and 
comprehensive testing of these lower-level 
components very difficult. Normally, to ensure 
coverage of the threads through the implementation 
of these lower-level components means increased 
testing from the high-level components, and 
sometime the number of tests can increase by an 
order of magnitude. 

This effort started early enough that the 
designers were able to expose input and output 
interfaces, including internal state information to 
increase the testability significantly. Approximately 
80 percent of the functionality was tested with 
improved interface support provided by the design 
team. The other 20 percent of the component 
elements could not be changed due to performance 
impacts, and re-testing effort. This significantly 
reduced the complexity of the model and tests, and 
provided greater test coverage with fewer tests to 
reduce time and cost. 

This design for testability philosophy was 
applied to another product in Phase IV. The Phase 
IV effort involved another older product that was to 
be replaced by another new product, but again due 
to market pressure by a competing product, a 

feature was added to an older product. The success 
on Phase III provided substantial evidence for 
repeating the effort on Phase IV. 

Modular Requirement Specifications 
This company has some of the best technical 

specifications and interface documentation of any 
member company, however we identified during 
the modeling process a reason for organizing the 
specifications in a different way. As shown in 
Figure 4, the company documents the interface 
specification separate from the requirement 
specification. Although this is over simplified, 
conceptually one team member specified a model 
for the requirements in Section 1.1. A second team 
member made the model for Section 1.2, and 
another made a model for Section 1.3 of the 
requirement specification. The issue that emerged 
during the modeling process of Section 1.4, which 
describes feature interaction requirements between 
Filter, Match, and Select, is that many of these 
features described conditions that were already 
defined in a model. Because these modeled 
requirements had undergone the review process, 
and all the tests generated from these models were 
complete, with passing status, the decision was 
made to develop a separate model for the 
requirements of Section 1.4. The problem however, 
is that many overlapping or related conditions were 
already defined in the other models, and rather than 
reusing existing model elements, the choice was 
made to produce a separate model. In addition, 
models make it visible when related information 
that should be grouped together is separated.
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Figure 4. Organization of Requirement Feature



Fortunately, the TAF team had created, at the 
request of other TAF users, a model-include 
mechanism that allowed the Feature Interactions 
model, associated with Section 1.4, to include the 
Filter, Match, and Select models, so that existing 
model functionality could be reused, as shown in 
Figure 5. If conditions change in the future, the 
changes can and should be made in a single place. 
Just as it is a good practice to separate the interface 
specification in code (e.g., in a .h include file for the 
C programming language), it is a good practice to 
specify component interfaces separately. Figure 5 

illustrates how common models represented 
interfaces separate from the required behavior. If 
the interface is related to the requirements, the 
interface model can be included with the model 
behavior. This practice is important, because if the 
interface changes, the changed interface is isolated 
in one place. Interface models tend to correspond 
with object mappings that represent the interface to 
the implementation. More details on common 
object mappings and test infrastructure are 
discussed below. 
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Feature Interactions (Section 1.4)

 
Figure 5. Models Represent Interfaces and Required Behavior

Finally, an important guideline, pointed out to 
the system engineers and specification team, is that 
the specification of the requirements should be 
associated with outputs used to assess the 
verification of the requirements. That means the 
requirement describing the interactions between 
components should be specified in the appropriate 
sections in Sections 1.1 through 1.3 as they relate to 
the interfaces of Filter, Match, and Select. 

Model-Based Review Process 
Companies that develop safety critical 

applications are often required to have code reviews 
as well as test procedure reviews. This company’s 
existing process often required reviews of hundreds 
of test scripts that may have hundreds of lines of 
code. The new process relied on using validated 
TAF tools that satisfied the quality assurance 
organization’s criteria for proper tool operation; this 
meant that the quality assurance organization 
believed that the tools would produce test vectors 
and test drivers that were complete and correct with 

respect to the model of the requirements. This 
permitted the review process to change. 

The new process involved a review of the 
model by the system engineers to ensure the 
completeness and correctness with respect to the 
requirements. All requirements used the 
requirement traceability mechanism of the TAF 
tools to link the requirements to the generated test 
vectors. The second part of the process involved the 
designer/implementers, who reviewed the models 
and the associated test vectors presented in matrix 
format. The review of the model for the associated 
requirements that were directly traced to the 
requirements was much easier to understand and 
verify than the test drivers for the model. 

Design decisions, implemented in code, result 
often in undocumented implementation-derived 
requirements. These implementation-derived 
requirements must be tested too. An important 
addition of the TAF process is that the designers 
were able to request the addition of a special type of 
model information called a “test constraint” for the 



implementation-derived requirements. A test 
constraint results in additional tests, in addition to 
the requirement-based tests to support 
implementation-derived requirements. This further 
reduces the unit testing effort typically performed 
by the developer. Because tests were now being run 
in parallel to development, the implementers work 
effort was reduced. This however, would not have 
been possible without the designer providing 
additional test interfaces at the lower-level 
components. 

The early interaction between the designers 
and test engineers improved the interfaces for 
testability, provided continuous testing earlier to 
reduce unit testing by the designers/implementers, 
and reduced the complexity of the testing to achieve 
more comprehensive test coverage with a reduced 
set of model-based tests. 

Multi-team Model and Test Infrastructure 
There are often significant skill and knowledge 

differences within an organization, and as discussed 
in previous sections, we relied on knowledgeable 
individuals to recommend simulation API services 
for scripting tests and for initializing the test 
environment in order to automate test execution. 
These knowledgeable individuals were better able 
to recommend specific services to carry out the 
functions to control the simulation. The test 
infrastructure for model based testing can be 

engineered to provide significant reuse of model 
interfaces and their associated object mappings, by 
leveraging the most knowledgeable resources 
within a company. 

Figure 6 illustrates the two roles involved in 
the backend aspects of model-based testing. This is 
the process where modeled variables more closely 
related to the requirements must be mapped to the 
physical mechanisms that are used to set inputs 
(i.e., inject test inputs) and get outputs. The two 
roles include the Modeler and the Test Automation 
Architecture (who often plays a modeling role too). 
In this company, there was one test automation 
architect for all of the modelers supporting the 
Phase III and Phase IV effort. This one individual 
tailored and evolved the test driver schema to 
operate with two completely different testing 
environments and languages. The schema provided 
common reporting and execution mechanisms all 
based on the same framework, which is shown in 
Figure 7. The test automation architecture controls 
also the common object mappings that correspond 
to the common component interfaces. A modeler 
that might not know as much about the details on 
the test environment can focus on building the 
models from the requirements and then be directed 
to reference common object mappings in order to 
produce test drivers for all of the modeled 
functionality that works with the concrete interfaces 
of the actual target systems or simulation.
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Figure 6. Roles in Test Driver Development



As shown in Figure 7 a modeler defines one 
object mapping for each output defined in a model. 
Within the object mapping, references are made to 
directory paths such as <HOME> that is assigned 
the project path (e.g., \TAF\course). From that 
<HOME> user-defined variable other information 
is referenced such as the location of the schema 
(e.g., <SCHEMA_HOME> = 
'<HOME>\test_driver_utilities'), which is where the 
test automation architecture provides common 
scripting utilities for reporting and logging, 
common initializations and declarations related to 
initializing the test environment, along with a 
common schema and common mapping file. The 

common mapping file (i.e., common.map) includes 
other common information that is pertinent to all 
modelers such as messages, literals, inputs, flags, 
and other variables. If an interface changes for 
some input, it is changed in one location (i.e., the 
inputs.map object mapping file), and all models that 
reference that input variable have a test driver 
interface that uses the API for setting that input 
variable. When such a change occurs, all test 
drivers can be regenerated to use the new interface. 
This avoids the problem in the current approach 
were every test script that references the input 
variable must be modified manually through some 
type of editing process. 

operation.MAP

<subsystemName> = 'operation';
<HOME> = '\TAF\course';
<SCHEMA_HOME> = '<HOME>\test_driver_utilities';
EMBED_PERL '<SCHEMA_HOME>\perl.pl';
INCLUDE '<SCHEMA_HOME>\inits_and_declarations.map';
INCLUDE '<SCHEMA_HOME>\schema.sch';
INCLUDE '<SCHEMA_HOME>\common.map';

schema

common.MAP

inits_and_declarations.MAP

messages.map
literals.map
inputs.map
flags.map
vars.map

Modeler

Test Automation Architect  
Figure 7. Test Infrastructure Organization

During both Phase III and Phase IV, the 
simulation environment, test infrastructure, 
component interfaces and reporting requirement 
continued to evolve. The test automation architect 
through updates to common object mappings, the 
schema, or utilities managed all of these changes in 
a way that was transparent to the other modelers. 

Model-Based Measurement 
During the beginning of Phase IV, which was 

about the middle of the Phase III project, we 
recognized that we had information and the need for 
using TAF measurement information to support 
project measurement [3]. Figure 8 provides a 

perspective on the key measurement information 
and how it relates to TAF requirements modeling. 
With this approach, there are four key base 
measures. System engineers are responsible for 
producing requirements, which results in the base 
measure number of requirements. A test engineer or 
modeler works in parallel with developers to refine 
requirements and build models to support iterative 
testing and development. Modeling introduces 
model variables, and this results in the base 
measure number of variables. After model 
translation and processing, the model requirements 
are converted into requirement threads, which is a 
base measure related to requirements. Finally, to 
support test driver generation, and test execution 



and results analysis, the base measure number of 
object mappings is used.  

This measurement-related information helped 
managers and project leads predict schedule 
duration and estimate project completion dates. 
Historical measurement information can be used 
prior to the start of a project, but it also is important 
to use data derived during the project. 

Completed Project Ahead of Schedule 
This company stated prior to the use of TAF 

that testing was more than 50% of their effort. 
Using model-based testing they completed the 

development and verification 9 weeks ahead of 
schedule. That had never occurred before.  

Significant Reduction in Re-Testing 
The company stated that after an experimental 

field trial of a product, they had to make changes 
and then completely re-test the entire product. They 
claimed that the TAF models and tests developed 
for the initial release, they were able to complete all 
testing 5 times faster as compared to their existing 
script-based testing process.
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Figure 8. Process View of TAF Measurement

Guidelines and Recommendations 
This section summarizes some of the key 

organizational and technical guidelines and 
recommendations provided in the case study. 
1. Start with pilot projects to support organizational change. 

Stakeholders need to see quickly demonstrated evidence 
within their organization to commit to use model-based testing 
on a scheduled deliverable. It is often good to select a pilot 
project from a recently completed project, because the 
requirements are often well understood, even if not well 
documented. In addition, test cases and test results often exist 
that provide a more objective basis for comparison with the 
model-based tests. 

2. Transition from a pilot project to a thread of an existing 
project. Select a thread that is likely to change often or have 

features extend it. The most leverage and benefits come from 
reusing and evolving one or more related models and the 
associated test infrastructure. Select a project prior to the 
requirement phase so that modeling can start early and help 
improve the requirements, while providing sufficient time to 
collaborate with the design team to improve the interfaces to 
support testability.  

3. Start requirement modeling early to identify requirement 
defects sooner to reduce rework cost. Use interface driven 
modeling to ensure the component under test has testable 
interfaces. Define the requirements for each component in 
terms of the known interfaces. 

4. Use goal-oriented modeling; work backwards by identifying 
each output at the component interfaces. Prioritize the ordering 
of the modeling for requirements thread to correspond with the 
expected development and/or integration of the component 
outputs associated with those requirement threads. 



5. Identify and model interfaces separate from behavioral 
requirements to maximize the reuse and ensure a single point 
of definition for each modeled interface. Include model 
references to interfaces for components that are related to the 
functional requirements to ensures that the model of an 
interface is defined in one place. If changes occur to the 
interface, only one model will need to be changed. 

6. Capture requirement traceability links in the requirement 
models. This provides important information to improve the 
review process. Tracing the requirements helps also in 
assessing the completeness of the model with respect to a 
requirement and related specification documents. Early 
modeling can identify incompletenesses in requirement 
documents that can be corrected early providing better input to 
designers and implementers. 

7. Ensure requirement models capture negative cases as well as 
the positive cases of a requirement. The negative case can 
often uncover problems such as the problem that is the likely 
cause of the Mars Polar Lander [4], but also represent 
important safety or security cases. Establish modeling 
practices such as naming conventions, the use of terms that can 
be reused throughout the model, the use of constants, and 
traceability links. 

8. Model continuously and in parallel with development. This 
can reduce testing effort for designers and implementers, and 
better ensure the design is testable. This results in an evolving 
automated test suite that should be executed for every build 
(daily, bidaily, weekly, etc.) of the system. This supports early 
identification of bugs that might be introduced by a developer 
change, and it makes it easier to understand and isolate the 
specific changes that introduced a defect into the system. 

9. Extend requirement-based test models by adding tests 
constraints to a model to support implementation-derived 
requirements identified by the designer or implementer to 
reduce the unit testing effort traditionally performed by 
implementers.  

10. Leverage the expertise of test automation experts, who often 
understand the most robust set of services for interfacing with 
the test environment as well as details related to initialization. 

11. Develop common object mappings that correspond to modeled 
interfaces. Ensure that the test driver schema isolates test 
environment specifics such as initialization and declaration 
that can be controlled by the test automation expert. Develop 
and evolve one test driver schema per environment. 
Coordinate effort through a lead test automation expert that 
leverages common logging, reporting, configuration 
management and measurement support. Ensure the test driver 
schema maps requirement identifiers to test scripts for more 
efficient test failure analysis. 

12. For more complex systems, analyze the interfaces, API, and 
requirement dependencies to ensure proper design of models 
that should be associated with test driver object mappings. 
This can maximize the reuse of common interface models and 
object mapping definitions to reduce cost and maintenance, 
and can reduce effort related to test sequencing. 

Conclusion, Results and Benefits 
The case study provides examples that 

summarize some of the benefits of model-based 
testing. The following provides a few other member 
company remarks that provide some perspective on 
the tangible as well as the intangible ROI associated 
with model-based test engineering. 

One company stated there are many tangible 
benefits from model-based testing, but surprisingly, 
there are several intangible ROI benefits. At the end 
of the pilot demonstration the process and the 
supporting test infrastructure was 80-90% complete 
and relatively stable to support all follow-on testing. 
In addition, they identified several requirements for 
the testing infrastructure that could further automate 
the process or change the underlying process for the 
organization. For example: once an automated test 
suite exists, it can be run each time a build of the 
system occurs, this allows bugs to be identified by 
the developers much earlier in the development 
process, and it makes it easier to understand the 
specific changes that introduced a defect into the 
system rather than waiting weeks or months before 
manual testing is performed. 

Lockheed Martin has used the TAF for many 
years [5], and has contributed significantly to the 
evolution and usage requirements including this 
release citation: 
1. Some of the areas we have applied the TAF technology are in 

the Vehicle Systems Flight Control Laws, the Mission 
Systems Middleware, Digital Radio Controls, Auto Logistics 
AFB Basing and Flight Ops, Branch Health and Mode 
Determination software testing, and Reliability Enhancement 
and Re-engineering Program (RERP) Design and Test. These 
applications have been applied to various elements of multiple 
programs that include JSF/F-35, F2, and C5. Prior pilot 
applications performed on T-50 and F-16 showed applicability 
to legacy programs and would be beneficial in future upgrades 
to existing programs. 

2. Applications on future upgrades to existing program that have 
extensive tabular formatted requirements have been identified 
as highly adaptable to the TAF technology through the use of 
TTM and T-VEC. 

3. On one application related to Flight Control LAWS (Safety 
Critical software) it was determined that the application of 
TAF would significantly reduce the test efforts related to each 
release of the software. Typically there would be 6-12 releases 
for each version of this software with a total savings greater 
than six million dollars just in the test effort portion. Even 
more important would be the reduction in schedule time for 
the releases, which would result in greater dollar savings 
related to other personnel supporting the efforts. 



4.  In one experience we discovered some critical errors (such as 
potential divide by zero) during the design effort that would 
not have been caught until the test phase of the development 
and in some cases may not have been detected until much later 
when these unique conditions were met. In another experience 
we discovered an error, early in the development cycle, with 
the code generation tool being used. Benefit analysis on 
software development shows that the cost of resolving these 
errors grows exponentially as they move through the 
development phases. The actual cost savings of these can only 
be imagined but definitely go into the millions for our type 
software. 

Conclusion 
Model-based testing impacts the entire life 

cycle, and has been demonstrated to apply to many 
types of applications, such as embedded systems, 
language processing, client-server and web systems, 
distributed processing systems, command, control 
and monitoring, information processing business 
logic (IT systems), database, security, smart cards, 
and life critical systems such as medical devices 
and avionics systems. It has helped many 
organizations improve the requirements, drive 
improvements in the design of the target system and 
simulators, improve the test infrastructure with 
design for testability, guide the creation of modular 
requirement specifications, and demonstrate the 
cost benefits of modeling requirements early, with 
significant reduction in cost and schedule.  

We have helped organizations in the adoption 
process, including the structuring of a multi-team 
modeling and test infrastructure, recommended 
model-based review practices, created tailored 

training, and shown how to use model-based 
measurement for project management. 
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