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Introduction 
Incomplete, ambiguous, or rapidly changing 

requirements can have a profound impact on the 
quality and cost of software development. In an 
effort to provide a more rigorous approach to flight-
critical system development, Rockwell Collins used 
a formal specification modeling approach to 
develop the mode control logic of a Flight Guidance 
System (FGS) for a General Aviation class aircraft 
[7; 8]. Rockwell Collins later used an early version 
of Test Automation Framework (TAF) approach for 
model-based analysis and test automation to 
analyze the requirement model and generate tests 
for a new implementation of the FGS system [10].  

The TAF approach integrates various 
government and commercially available model 
development and test generation tools to support 
defect prevention and automated testing of systems 
and software. Current implementations of the TAF 
have been demonstrated to reduce cycle time by 50 
percent and increase quality by eliminating 
requirement defects and automating test [11]. The 
latest version of the TAF has been re-applied to the 
FGS system, and has uncovered numerous model 
contradiction (i.e., requirement defects) and 
implementation faults that went undiscovered in the 
analyses prior to 1998. 

This paper describes the TAF model-based 
verification approach. It summarizes the new model 
and implementation errors that have been 
discovered. It briefly describes how the TAF 
approach can be used to locate requirement defects 
early in the development process, reduce manual 
test development effort, and reduce rework. It 
describes how the use of model-based development 
and test automation can be effectively used in the 
development and verification of systems that must 
meet the highest standards of safety, reliability, and 
quality. 

Background  
Miller from Rockwell Collins used the CoRE 

[6] and SCR [5] methods to specify the 
requirements for the mode logic of an FGS. An 
FGS compares the measured state of an aircraft 
(position, speed, and attitude) to the desired state 
and generates pitch and roll guidance commands to 
minimize the difference between the measured and 
desired state. The mode logic accepts commands 
from the flight crew and a variety of systems such 
as the Flight Management System (FMS).  

As reflected in Figure 1, the FGS was first 
specified by hand using the CoRE method, 
inspected, then entered into a tool supporting the 
SCR method provided by the Naval Research 
Laboratory (NRL). Despite careful review and 
correction of 33 errors in the CoRE model, the 
SCRtool’s analysis capabilities revealed an 
additional 27 errors [8]. Statezni later used an early 
TAF translator [2] and the T-VEC [1] toolset to 
analyze the SCR model, generate test vectors and 
test drivers. The test drivers were executed against a 
java implementation of the FGS requirements [10] 
and revealed six errors. Offutt applied his tool to the 
FGS model and found two errors [9], and the latest 
TAF toolset, described in this paper, identified 25 
errors. 
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Approach and Toolset 
This section summarizes the TAF approach 

used to verify the FGS system in this latest effort.  

Process Overview 
A conceptual process flow that relates the TAF 

artifacts and tools is shown in Figure 2.  

• FGS specification was modeled using the 
SCRtool 

• SCR-to-T-VEC translator (SCR2TVEC), 
developed by the Consortium and T-
VEC, was used to translate the SCR 
model into a T-VEC test specification 

• T-VEC tools were used on the T-VEC 
representation of the model requirements 
to automatically generate test vectors 
(i.e., test cases with test input values, 
expected output values and traceability 
information) and requirement-to-test 
coverage metrics  

• T-VEC automatically generated test 
drivers to execute tests against the FGS 
Java code  

• Test results were compared with the test 
vector expected outputs, and a results 
report was produced 

SCR Concepts and Tool 
SCR is a table-based modeling approach, as 

shown in Figure 3, for modeling system and 
software requirements. SCR represents system 
inputs as monitored variables, system outputs as 
controlled variables and intermediate values as 
term variables. Variables are defined as primitive 
types (e.g., Integers, Float, Boolean) or as user-
defined types including enumerations. Behavior is 
defined using a tabular approach relating four 
model elements: modes, conditions, events, and 
terms. The functionality or behavior of the system 
is defined using tables to relate monitored variables 
to controlled variables. There are three basic types 
of tables (with two variants): 

• Condition table (with mode or modeless) 
• Event table (with mode or modeless) 
• Mode transition table for a mode class 

 
A mode class is a state machine, where system 

states are called system modes and the transitions of 
the state machine are characterized by guarded 
events. A condition characterizes system state with 
an expression that evaluates to true or false. An 
event occurs when any system entity changes value. 
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SCR modeling permits condition, event and 
mode tables to be combined. Terms and controlled 
variables are functions of input variables, modes, or 
other terms. Their values are defined in the model 
through event or condition tables. This allows 
complex relationships between monitored and 
controlled variables to be described using term 
variables describing simpler and potentially 
reusable relationships, as illustrated in Figure 4. 

Model Translations 
The TAF translator converts SCR models, 

which are composed of condition, event, and mode 
tables into T-VEC test specification models. Each 
SCR table is represented by a T-VEC subsystem. 
From each subsystem the T-VEC toolset produces a 
set of precondition/postcondition pairs, referred to 
as test specification paths (TSP), to support model 
analysis and test generation. The TSPs are 
hierarchical and fully represent cross-table 
dependencies in the SCR model that enables 
locating defects related to more than one SCR table. 

Test Generation and Defect Identification 
Test vector generation attempts to produce a 

test vector for every TSP. A test vector is a set of 
test input values that satisfy the input constraints, 
and an expected output value that is derived by 
evaluating the postcondition with the input values 
[1]. Informally, from a test generation perspective, a 
specification is satisfiable if at least one test vector 
exists for every TSP [2]. If a test vector is not 
produced for a TSP, it probably contains a 
contradiction (a requirement defect). 

The SCRtool can check consistency of 
individual tables, but many inconsistencies result 
from cross-table dependency relationships that are 
analogous to feature interaction problems. Using 
TAF to identify these cross-table defects is a two-
step process: 1) the test vector generator attempts to 
find a test for every TSP, 2) a post-processing 
activity identifies TSPs that have no associated test 
vector. The TSPs with no associated test vectors are 
traced back to the requirements model to identify 
requirement defects. 
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Test Drivers, Execution and Results Analysis 
Test driver generation automates the time 

consuming and error prone activity sometimes 
referred to as test script development. The T-VEC 
test driver generator combines test vectors and a test 
driver schema to produce a test driver (script) and a 
file of expected test outputs. The test vectors 
describe the test data, while the test driver schema 
describes a generic algorithm for executing tests in 
a specific environment. Schemas are typically 
defined once per test environment and include the 
following high level operations: initialize the 
system, set system outputs to value other than the 
expected result, set system input values, execute the 
system under test, retrieve and store the actual test 
outputs. 

Results analysis compares the actual results of 
test execution to expected test results as defined by 
the test vector expected outputs. A comparator 
utility supplied with the T-VEC tools supports 
automating the results comparisons while 
accounting for any numeric tolerances.  

Model and Implementation Defects 
As a result of the prior analysis using different 

verification tools and techniques [7; 8; 10] the FGS 
specification was believed to have no remaining 
defects. The implementation of the specification 
written in Java was known to have six documented 
coding errors. This section presents the results of 
applying of the second generation of the TAF 
translator and T-VEC toolset on the FGS 
specification. It includes a description of the new 
model and implementation defects identified with 
the new tools. 

Model Analysis 
The FGS model contains 78 SCR tables 

including 47 condition tables, 14 mode transition 
tables, and 15 event tables. Using the default 
scr2tvec translation options, the FGS model was 
translated into 78 primary T-VEC subsystems each 
corresponding to an SCR table. The translator also 
produced two additional T-VEC subsystems that 
package data types and constants used throughout 
the model.  
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Analysis Summary 
Translation and processing by the T-VEC tools 

produced 884 unique TSPs. The T-VEC test 
generation system uses a test selection heuristic 
based on domain testing theory where low-bound 
and high-bound values are selected for each 
constraint.1 Domain testing theory is based on the 
intuitive idea that faults in implementation are more 
likely to be found by test points chosen near 
appropriately defined program input and output 
domain boundaries [12]. By default, T-VEC 
attempts to determine two test vectors for each TSP, 
one with low-bound values and another with high-
bound values. Therefore, test generation should 
have produced 1778 test vectors. However, due to 
latent errors remaining in the FGS SCR 
specification, only 1700 test vectors were produced.  

Table 1 summarizes the classes of defects 
identified. The first two rows indicate 10 newly 
discovered model contradictions resulted in 25 
model defects. The missing test vectors discussed in 
the previous section occurred because these 
contradictions produce unsatisfiable TSPs. Each 
contradiction involved at least one event or 
condition table and at least one mode table. An 
additional 21 faults of various types in the 
                                                      
1 White and Cohen proposed domain testing theory as a 
strategy to select test points to reveal domain errors [13]. Their 
theory is based on the premise that if there is no coincidental 
correctness, then test cases that localize the boundaries of 
domains with arbitrarily high precision are sufficient to test all 
the points in the domain.  

implementation resulted in 95 test failures. The test 
cases also revealed six known bugs. These defects 
are described in the following subsections. 

Defect Types 
As defined by Howden and later refined by 

Zeil, there are two types of implementation errors: 
computation errors and domain errors. A 
computation error occurs when the correct path 
through the program is taken, but the output is 
incorrect due to faults in the computation along the 
path. A domain error occurs when an incorrect 
output is generated due to executing the wrong path 
through a program [How76; Zei89]. Both domain 
and computation errors can also occur in models.  

Model Defects 
The concept of a program path and its related 

output computation is analogous to a TSP from a 
translated model. A domain error for a TSP means 
that there is no input set that satisfies the test 
specification’s constraints. Consider the trivial 
example (and graphic insert):  

x: Integer with domain from 0 to 10 
y: Integer with domain from 0 to 10 
z: Integer with domain from 0 to 10 
 

If there is a requirement that specifies  

z = 0 when 
      x < 3 AND  
      y < 4 AND  
      x + y > 7  
 

Table 1. Analysis Details 

Defect Description
Defect 
Type

Unique 
Defects

Total 
Defects

Invalid event expression for related mode table Model 5 7
Invalid constraint for dependency Model 5 18
Mode transition implemented incorrectly Code 2 3
Specification not implemented Code 1 1
Variable referenced before set Code 3 26
Incorrect implementation of mode logic Code 1 4
Incorrect code (likely cut/paste error) Code 1 1
Incorrect event implementation Code 3 44
Hidden bug - coincidental correctness Code 1 2
Unmodeled domain knowledge Code 3 8
New Errors 25 114
Known bugs Code 6 6
Total Errors Detected 31 120  
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then  
   maximum value for x is 2  
   maximum value for y is 3 
   minimum value for x + y is 8 

x

(10,10)

(0,0)

y

x + y > 7x + y > 7

Constraint Key

x < 3x < 3

y < 4y < 4

x & y intersectionx & y intersection

 
 

There are no values of x and y that satisfy this 
requirement. This is illustrated in the figure as there 
is no intersection of the three regions defined by x < 
3, y < 7 and x + y > 7. The constraint expression 
cannot be satisfied and is therefore contradictory. 
The contradiction is a domain error, because the 
variable z can never be assigned a value of 0 
through this requirement. Thus, the requirement is 
untestable. Real-world problems typically include 
complex constraints that span many modules or 
components of an application. In these situations it 
can be difficult to isolate these errors through 
manual processes. Automated model analysis 
provides a tool for locating these errors. T-VEC 
identifies arithmetic contradictions for expressions 
including all primary scalar data types and common 
mathematic operators. 

Specification Contradictions 
Analysis of the T-VEC vector generation 

results revealed 15 subsystems that included 
specification contradictions preventing production 

of a test vector for one or more of the subsystem’s 
TSPs. Two types of contradictions were identified. 
One type included invalid event specifications in an 
event table that was dependent on a mode class. The 
second type of defect involved conditions within a 
condition table that were not satisfiable with respect 
to dependencies on a model class. Domain 
knowledge is required to understand the 
contradictions within the FGS model, therefore the 
following two examples illustrate the essence of 
these contradictions. 

Invalid Event Expression 
Five event tables contain contradictions. Each 

of these tables is mode-dependent meaning each 
event is dependent on the system being in a specific 
mode. The error in each table is similar to the one 
illustrated in the VCR example shown in Figure 5. 
The VCR mode table indicates that if the VCR is in 
the off mode and the Power button is pressed, that 
the VCR will go to the on mode, and in the on 
mode if the Power button is pressed, it will go to the 
off mode. The VCR’s LCD display (Backlight) 
should be turned on and off when the VCR is turned 
on and off. The Backlight event table attempts to 
specify this behavior, but it includes a subtle 
inconsistency between the mode dependency and 
event expression. 

In a mode dependent SCR event table, events 
are triggered only when the system is in the mode 
associated with the event expression. As 
highlighted in Figure 5, the event associated with 
turning the VCR on, @T(VCR = on), is triggered 
only when the VCR is on.. The event expression 
@T(VCR = on) means that previously the 
expression VCR=on was FALSE and now it is 
TRUE. The transition of the event expression from 

Source Event Destination
off @T(Power) on
on @T(Power) off

Mode Table: VCR

Modeclass: VCR
off NEVER @T(VCR = off)
on @T(VCR = on) NEVER
Backlight’ = on off

Event
Specifies

Modes

Invalid Event
Expression

 
Figure 5. Example Event Expression 



 7 

FALSE to TRUE defines the point in time when the 
event is “triggered.”  

In this case, this transition can never occur as 
specified, because the mode dependency requires 
that the VCR remain on (i.e., in the on mode both 
previously and presently) while the event specifies 
that the VCR was previously not on. Thus, the table 
includes a contradiction. 

Invalid Constraint for Dependency 
The second type of model defect involves 

conditions that cannot be satisfied in the context of 
a mode dependency. 

This example shown in Figure 6 contains two 
tables that are related to a mode table (not shown) 
for the VCR. The valid VCR modes include: play, 
ff (fast forward), rew (rewind), rec (record), play 
and prog (program). The first table defines the 
display color for the VCR LCD text output, and the 
second table defines the values of the Text. The 
Display_Color table indicates the color is set to 
none when the Text output is Blank in any 
Operation mode. The contradiction occurs because 
the Text term table indicates that Text is only Blank 
in the prog Operation mode. Therefore, the 
highlighted conditions in the Display_Color table 
can never be satisfied, because Text is never Blank 
when the operation mode is play, ff, rew, or rec. 
Five new instances of this type of defect were 
identified in the FGS model that resulted in 18 
unsatisfiable TSPs.  

Overlapping Conditions / Non-Determinism 
A set of model tables included constraints with 

overlapping conditions. Such overlaps make the 
model non-deterministic. These problems were 
identified when the generated tests did not pass 
(i.e., the expected output and the actual output did 
not match). These situations are discussed in the 
next section. 

Verification of FGS Implementation  
The T-VEC test driver generator produces test 

drivers for each of the test vectors derived from the 
model. The test drivers were executed against a 
Java implementation of the FGS model. The first 
generation tools helped identify six implementation 
errors. The updated version of the tools uncovered 
an additional 21 new faults manifesting in 95 test 
failures. These implementation faults have also 
been classified. 

Mode Transition Implemented Incorrectly 
Two faults, resulting in three test failures, were 

related to if-then-else conditions that did not 
correctly implement the associated mode transition 
constraints. 

Specification Not Implemented  
The update method for a term that was 

dependent on four other table specifications was not 
fully implemented. This was likely caused by the 
complexity associated with multiple levels of table 

Modeclass: Operation
play . . .
ff . . .
rew TRUE . . .
rec TRUE . . .
prog TRUE . . .
Text = Blank REC REW . . .

Condition

Modeclass: Operation
NOT(prog) AND 
NOT(rec)

Text = Blank Text != Blank

FALSE
rec Text = Blank FALSE Text != Blank
prog Text = Blank FALSE FALSE
Display_Color = none green red

Condition
Assume Modeclass: 

Operation with modes:
play, ff, rew, rec, prog

Dependency ONLY 
Valid for Operation 

Mode = prog

 
Figure 6. Example of Invalid Condition for Table Reference 
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dependencies typical of complex systems. One fault 
of this type manifested in one failure. 

Variable Referenced Before Set  
Three faults, resulting in 26 failures, were 

related to incorrect logic that allowed variables to 
be referenced before set. 

Incorrect Implementation Of Mode Logic 
The logic implementing event transitions of a 

mode table assumed a dependency ordering, 
however, the SCR model is a declarative model and 
the order of the modes and event transitions within 
the model has no relevance. One fault of this type 
manifested in one failure. 

Incorrect Code (likely cut/paste error) 
After analyzing the code, the most likely cause 

of the one failure appears to be a cut/paste error. 

Incorrect Event Implementation 
Although the order of the events in an event 

table has no explicit meaning, event tables are often 
implemented using sequences of if-then-elseif-else 
statements that have order. Three faults related to 
mapping the SCR declarative (i.e., unordered) 
model into this ordered logic, resulted in 44 test 
failures. 

Hidden Bug (coincidental correctness).  
A general test driver pattern is typically 

employed to ensure that output objects are set to a 
value other than the expected output to avoid 
coincidental correctness, which can occur by the 
output retaining the expected output from system 
initialization or prior execution of the code. In this 
case, the output was not set to a value other than 
expected and the fault was therefore not detected. 
Fixing this initialization revealed an error not 
discovered previously.  

Unmodeled Domain Knowledge  
The FGS model includes a type of “momentary 

contact” switch that automatically returns to the 
OFF position whenever activated. The model 
assumed this behavior and did not model it 

explicitly. This resulted in an inconsistency 
between the implementation and model, which 
resulted in a eight test failure associated with three 
faults. 

Summary 
This paper describes the ongoing effort to 

evolve model analysis for complex systems to 
support development of high reliability systems, 
especially safety critical ones. The results illustrate 
the importance of using tools to support the analysis 
of complex systems. This historical evolution of the 
original FGS model used inspections to remove 
model defects and the SCRtool model analysis 
capabilities to identify problems in individual 
tables. The first generation TAF/T-VEC tools and 
Offutt tool were able to detect additional faults 
including those related to multiple tables. The latest 
version of the TAF/T-VEC tools identified many 
model defects that primarily involved multiple 
tables. In addition, these tools helped uncover many 
additional faults in the implementation. Model 
defects and implementation faults similar to those 
discovered occur commonly in complex systems. 
As software-based systems continue to evolve, the 
capabilities demonstrated can provide greater 
assurance that these systems operate dependably. 

Other Applications and Results 
The core capabilities underlying this approach 

were developed in the late 1980s and proven 
through use in support of FAA certifications for 
flight critical avionics systems [1]. Statezni 
described how the approach supports requirement-
based test coverage mandated by the FAA with 
significant life cycle cost savings [10; 11]. Safford 
presented results stating the approach reduced cost, 
effort, and cycle-time by eliminating requirement 
defects and automating testing [11]. Safford’s 
presentation summarized the benefits: 

• Better quality requirements for design 
and implementation help eliminate 
rework in those phases as well as during 
test 

• Verification modeling can reduce the 
time normally spent in verification test 
planning by up to 50 percent 
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• Test generation from a verification model 
can eliminate up to 90 percent of the 
manual test creation and debugging effort 

• Both the number of test cases and the 
phasing of their execution can be 
optimized, eliminating test redundancy  

• A known level of requirements coverage 
can be planned, and measured during test 
execution 

 

The approach and tools described in this paper 
have been used for modeling and testing system, 
software integration, software unit, and some 
hardware/software integration functionality. It was 
used to identify the most likely cause of the Mars 
Polar Lander crash [4]. It has been used for 
functional security testing [3], as well as, critical 
applications like telemetry communication for heart 
monitors, flight navigation, guidance, autopilot 
logic, display systems, flight management and 
control laws, airborne traffic and collision 
avoidance. In addition, it has been applied to non-
critical applications such as workstation-based Java 
applications with GUI user interfaces and database 
applications. The approach supports automated test 
driver generation in a variety of open languages 
(e.g., C, C++, Java, Ada, Perl, PL/I, SQL), as well 
as, proprietary languages, COTS test injection 
products, and test environments. 
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