
 1

AUTOMATED MODEL ANALYSIS AND TEST GENERATION FOR
FLIGHT GUIDANCE MODE LOGIC

Robert D. Busser, Mark R. Blackburn, Ph.D., Aaron M. Nauman
Software Productivity Consortium/T-VEC Technologies, Herndon, VA

Introduction
Incomplete, ambiguous, or rapidly changing

requirements can have a profound impact on the
quality and cost of software development. In an
effort to provide a more rigorous approach to flight-
critical system development, Rockwell Collins used
a formal specification modeling approach to
develop the mode control logic of a Flight Guidance
System (FGS) for a General Aviation class aircraft
[7; 8]. Rockwell Collins later used an early version
of Test Automation Framework (TAF) approach for
model-based analysis and test automation to
analyze the requirement model and generate tests
for a new implementation of the FGS system [10].

The TAF approach integrates various
government and commercially available model
development and test generation tools to support
defect prevention and automated testing of systems
and software. Current implementations of the TAF
have been demonstrated to reduce cycle time by 50
percent and increase quality by eliminating
requirement defects and automating test [11]. The
latest version of the TAF has been re-applied to the
FGS system, and has uncovered numerous model
contradiction (i.e., requirement defects) and
implementation faults that went undiscovered in the
analyses prior to 1998.

This paper describes the TAF model-based
verification approach. It summarizes the new model
and implementation errors that have been
discovered. It briefly describes how the TAF
approach can be used to locate requirement defects
early in the development process, reduce manual
test development effort, and reduce rework. It
describes how the use of model-based development
and test automation can be effectively used in the
development and verification of systems that must
meet the highest standards of safety, reliability, and
quality.

Background
Miller from Rockwell Collins used the CoRE

[6] and SCR [5] methods to specify the
requirements for the mode logic of an FGS. An
FGS compares the measured state of an aircraft
(position, speed, and attitude) to the desired state
and generates pitch and roll guidance commands to
minimize the difference between the measured and
desired state. The mode logic accepts commands
from the flight crew and a variety of systems such
as the Flight Management System (FMS).

As reflected in Figure 1, the FGS was first
specified by hand using the CoRE method,
inspected, then entered into a tool supporting the
SCR method provided by the Naval Research
Laboratory (NRL). Despite careful review and
correction of 33 errors in the CoRE model, the
SCRtool’s analysis capabilities revealed an
additional 27 errors [8]. Statezni later used an early
TAF translator [2] and the T-VEC [1] toolset to
analyze the SCR model, generate test vectors and
test drivers. The test drivers were executed against a
java implementation of the FGS requirements [10]
and revealed six errors. Offutt applied his tool to the
FGS model and found two errors [9], and the latest
TAF toolset, described in this paper, identified 25
errors.

Analysis
Technique
/Tool

FGS
Textual

Requirements

1995

CoRE
Text

Model

Inspections

33

1997

27

U
ni

qu
e

D
ef

ec
ts

SCRtool
Analysis

SCR
Model V1

1998

SCR
Model V9

6

TAF 1.0/
T-VEC

Offutt
Tool

2

2001

TAF 2.0/
T-VEC

25

1999
Figure 1. Model Evolution and Analysis

 2

Approach and Toolset
This section summarizes the TAF approach

used to verify the FGS system in this latest effort.

Process Overview
A conceptual process flow that relates the TAF

artifacts and tools is shown in Figure 2.

• FGS specification was modeled using the
SCRtool

• SCR-to-T-VEC translator (SCR2TVEC),
developed by the Consortium and T-
VEC, was used to translate the SCR
model into a T-VEC test specification

• T-VEC tools were used on the T-VEC
representation of the model requirements
to automatically generate test vectors
(i.e., test cases with test input values,
expected output values and traceability
information) and requirement-to-test
coverage metrics

• T-VEC automatically generated test
drivers to execute tests against the FGS
Java code

• Test results were compared with the test
vector expected outputs, and a results
report was produced

SCR Concepts and Tool
SCR is a table-based modeling approach, as

shown in Figure 3, for modeling system and
software requirements. SCR represents system
inputs as monitored variables, system outputs as
controlled variables and intermediate values as
term variables. Variables are defined as primitive
types (e.g., Integers, Float, Boolean) or as user-
defined types including enumerations. Behavior is
defined using a tabular approach relating four
model elements: modes, conditions, events, and
terms. The functionality or behavior of the system
is defined using tables to relate monitored variables
to controlled variables. There are three basic types
of tables (with two variants):

• Condition table (with mode or modeless)
• Event table (with mode or modeless)
• Mode transition table for a mode class

A mode class is a state machine, where system

states are called system modes and the transitions of
the state machine are characterized by guarded
events. A condition characterizes system state with
an expression that evaluates to true or false. An
event occurs when any system entity changes value.

FGS Requirements SCR Modeling Tool

scr2tvec
Model

Translator

Test Environment
T-VEC Test

Specification

T-VEC
Test Vector
Generator

Test Vectors

T-VEC
Test Driver
Generator

Test Driver
Schemas

Figure 2. Process Flow and Artifacts

 3

SCR modeling permits condition, event and
mode tables to be combined. Terms and controlled
variables are functions of input variables, modes, or
other terms. Their values are defined in the model
through event or condition tables. This allows
complex relationships between monitored and
controlled variables to be described using term
variables describing simpler and potentially
reusable relationships, as illustrated in Figure 4.

Model Translations
The TAF translator converts SCR models,

which are composed of condition, event, and mode
tables into T-VEC test specification models. Each
SCR table is represented by a T-VEC subsystem.
From each subsystem the T-VEC toolset produces a
set of precondition/postcondition pairs, referred to
as test specification paths (TSP), to support model
analysis and test generation. The TSPs are
hierarchical and fully represent cross-table
dependencies in the SCR model that enables
locating defects related to more than one SCR table.

Test Generation and Defect Identification
Test vector generation attempts to produce a

test vector for every TSP. A test vector is a set of
test input values that satisfy the input constraints,
and an expected output value that is derived by
evaluating the postcondition with the input values
[1]. Informally, from a test generation perspective, a
specification is satisfiable if at least one test vector
exists for every TSP [2]. If a test vector is not
produced for a TSP, it probably contains a
contradiction (a requirement defect).

The SCRtool can check consistency of
individual tables, but many inconsistencies result
from cross-table dependency relationships that are
analogous to feature interaction problems. Using
TAF to identify these cross-table defects is a two-
step process: 1) the test vector generator attempts to
find a test for every TSP, 2) a post-processing
activity identifies TSPs that have no associated test
vector. The TSPs with no associated test vectors are
traced back to the requirements model to identify
requirement defects.

Data Types

Requirement
Modeling and
Clarification

Variables

FGS Requirements

Behavior
State Machines
(Mode Table) Events Conditions

Figure 3. SCR Modeling Constructs

 4

Test Drivers, Execution and Results Analysis
Test driver generation automates the time

consuming and error prone activity sometimes
referred to as test script development. The T-VEC
test driver generator combines test vectors and a test
driver schema to produce a test driver (script) and a
file of expected test outputs. The test vectors
describe the test data, while the test driver schema
describes a generic algorithm for executing tests in
a specific environment. Schemas are typically
defined once per test environment and include the
following high level operations: initialize the
system, set system outputs to value other than the
expected result, set system input values, execute the
system under test, retrieve and store the actual test
outputs.

Results analysis compares the actual results of
test execution to expected test results as defined by
the test vector expected outputs. A comparator
utility supplied with the T-VEC tools supports
automating the results comparisons while
accounting for any numeric tolerances.

Model and Implementation Defects
As a result of the prior analysis using different

verification tools and techniques [7; 8; 10] the FGS
specification was believed to have no remaining
defects. The implementation of the specification
written in Java was known to have six documented
coding errors. This section presents the results of
applying of the second generation of the TAF
translator and T-VEC toolset on the FGS
specification. It includes a description of the new
model and implementation defects identified with
the new tools.

Model Analysis
The FGS model contains 78 SCR tables

including 47 condition tables, 14 mode transition
tables, and 15 event tables. Using the default
scr2tvec translation options, the FGS model was
translated into 78 primary T-VEC subsystems each
corresponding to an SCR table. The translator also
produced two additional T-VEC subsystems that
package data types and constants used throughout
the model.

Condition Tables

Event Tables

Mode Tables

Condition Tables

Event Tables

Mode Tables

Monitored
Variables

Controlled
VariablesTerm

Variables

Common
Conditions

Test
Specification

Path
(Logically AND’ed

set of
primitive conditions)

Postcondition

Constraint 1 output = f1(inputs)
OR
Constraint 2 output = f2(inputs)
OR
. . .
Constraint n output = fn(inputs)

Precondition

Condition Tables 49
Event Tables 15
Model Tables 14
Test Specifications 884
Levels - Depth 11

FGS Model Statistics

Figure 4. Representation of Test Specification Model

 5

Analysis Summary
Translation and processing by the T-VEC tools

produced 884 unique TSPs. The T-VEC test
generation system uses a test selection heuristic
based on domain testing theory where low-bound
and high-bound values are selected for each
constraint.1 Domain testing theory is based on the
intuitive idea that faults in implementation are more
likely to be found by test points chosen near
appropriately defined program input and output
domain boundaries [12]. By default, T-VEC
attempts to determine two test vectors for each TSP,
one with low-bound values and another with high-
bound values. Therefore, test generation should
have produced 1778 test vectors. However, due to
latent errors remaining in the FGS SCR
specification, only 1700 test vectors were produced.

Table 1 summarizes the classes of defects
identified. The first two rows indicate 10 newly
discovered model contradictions resulted in 25
model defects. The missing test vectors discussed in
the previous section occurred because these
contradictions produce unsatisfiable TSPs. Each
contradiction involved at least one event or
condition table and at least one mode table. An
additional 21 faults of various types in the

1 White and Cohen proposed domain testing theory as a
strategy to select test points to reveal domain errors [13]. Their
theory is based on the premise that if there is no coincidental
correctness, then test cases that localize the boundaries of
domains with arbitrarily high precision are sufficient to test all
the points in the domain.

implementation resulted in 95 test failures. The test
cases also revealed six known bugs. These defects
are described in the following subsections.

Defect Types
As defined by Howden and later refined by

Zeil, there are two types of implementation errors:
computation errors and domain errors. A
computation error occurs when the correct path
through the program is taken, but the output is
incorrect due to faults in the computation along the
path. A domain error occurs when an incorrect
output is generated due to executing the wrong path
through a program [How76; Zei89]. Both domain
and computation errors can also occur in models.

Model Defects
The concept of a program path and its related

output computation is analogous to a TSP from a
translated model. A domain error for a TSP means
that there is no input set that satisfies the test
specification’s constraints. Consider the trivial
example (and graphic insert):

x: Integer with domain from 0 to 10
y: Integer with domain from 0 to 10
z: Integer with domain from 0 to 10

If there is a requirement that specifies

z = 0 when
 x < 3 AND
 y < 4 AND
 x + y > 7

Table 1. Analysis Details

Defect Description
Defect
Type

Unique
Defects

Total
Defects

Invalid event expression for related mode table Model 5 7
Invalid constraint for dependency Model 5 18
Mode transition implemented incorrectly Code 2 3
Specification not implemented Code 1 1
Variable referenced before set Code 3 26
Incorrect implementation of mode logic Code 1 4
Incorrect code (likely cut/paste error) Code 1 1
Incorrect event implementation Code 3 44
Hidden bug - coincidental correctness Code 1 2
Unmodeled domain knowledge Code 3 8
New Errors 25 114
Known bugs Code 6 6
Total Errors Detected 31 120

 6

then
 maximum value for x is 2
 maximum value for y is 3
 minimum value for x + y is 8

x

(10,10)

(0,0)

y

x + y > 7x + y > 7

Constraint Key

x < 3x < 3

y < 4y < 4

x & y intersectionx & y intersection

There are no values of x and y that satisfy this
requirement. This is illustrated in the figure as there
is no intersection of the three regions defined by x <
3, y < 7 and x + y > 7. The constraint expression
cannot be satisfied and is therefore contradictory.
The contradiction is a domain error, because the
variable z can never be assigned a value of 0
through this requirement. Thus, the requirement is
untestable. Real-world problems typically include
complex constraints that span many modules or
components of an application. In these situations it
can be difficult to isolate these errors through
manual processes. Automated model analysis
provides a tool for locating these errors. T-VEC
identifies arithmetic contradictions for expressions
including all primary scalar data types and common
mathematic operators.

Specification Contradictions
Analysis of the T-VEC vector generation

results revealed 15 subsystems that included
specification contradictions preventing production

of a test vector for one or more of the subsystem’s
TSPs. Two types of contradictions were identified.
One type included invalid event specifications in an
event table that was dependent on a mode class. The
second type of defect involved conditions within a
condition table that were not satisfiable with respect
to dependencies on a model class. Domain
knowledge is required to understand the
contradictions within the FGS model, therefore the
following two examples illustrate the essence of
these contradictions.

Invalid Event Expression
Five event tables contain contradictions. Each

of these tables is mode-dependent meaning each
event is dependent on the system being in a specific
mode. The error in each table is similar to the one
illustrated in the VCR example shown in Figure 5.
The VCR mode table indicates that if the VCR is in
the off mode and the Power button is pressed, that
the VCR will go to the on mode, and in the on
mode if the Power button is pressed, it will go to the
off mode. The VCR’s LCD display (Backlight)
should be turned on and off when the VCR is turned
on and off. The Backlight event table attempts to
specify this behavior, but it includes a subtle
inconsistency between the mode dependency and
event expression.

In a mode dependent SCR event table, events
are triggered only when the system is in the mode
associated with the event expression. As
highlighted in Figure 5, the event associated with
turning the VCR on, @T(VCR = on), is triggered
only when the VCR is on.. The event expression
@T(VCR = on) means that previously the
expression VCR=on was FALSE and now it is
TRUE. The transition of the event expression from

Source Event Destination
off @T(Power) on
on @T(Power) off

Mode Table: VCR

Modeclass: VCR
off NEVER @T(VCR = off)
on @T(VCR = on) NEVER
Backlight’ = on off

Event
Specifies

Modes

Invalid Event
Expression

Figure 5. Example Event Expression

 7

FALSE to TRUE defines the point in time when the
event is “triggered.”

In this case, this transition can never occur as
specified, because the mode dependency requires
that the VCR remain on (i.e., in the on mode both
previously and presently) while the event specifies
that the VCR was previously not on. Thus, the table
includes a contradiction.

Invalid Constraint for Dependency
The second type of model defect involves

conditions that cannot be satisfied in the context of
a mode dependency.

This example shown in Figure 6 contains two
tables that are related to a mode table (not shown)
for the VCR. The valid VCR modes include: play,
ff (fast forward), rew (rewind), rec (record), play
and prog (program). The first table defines the
display color for the VCR LCD text output, and the
second table defines the values of the Text. The
Display_Color table indicates the color is set to
none when the Text output is Blank in any
Operation mode. The contradiction occurs because
the Text term table indicates that Text is only Blank
in the prog Operation mode. Therefore, the
highlighted conditions in the Display_Color table
can never be satisfied, because Text is never Blank
when the operation mode is play, ff, rew, or rec.
Five new instances of this type of defect were
identified in the FGS model that resulted in 18
unsatisfiable TSPs.

Overlapping Conditions / Non-Determinism
A set of model tables included constraints with

overlapping conditions. Such overlaps make the
model non-deterministic. These problems were
identified when the generated tests did not pass
(i.e., the expected output and the actual output did
not match). These situations are discussed in the
next section.

Verification of FGS Implementation
The T-VEC test driver generator produces test

drivers for each of the test vectors derived from the
model. The test drivers were executed against a
Java implementation of the FGS model. The first
generation tools helped identify six implementation
errors. The updated version of the tools uncovered
an additional 21 new faults manifesting in 95 test
failures. These implementation faults have also
been classified.

Mode Transition Implemented Incorrectly
Two faults, resulting in three test failures, were

related to if-then-else conditions that did not
correctly implement the associated mode transition
constraints.

Specification Not Implemented
The update method for a term that was

dependent on four other table specifications was not
fully implemented. This was likely caused by the
complexity associated with multiple levels of table

Modeclass: Operation
play . . .
ff . . .
rew TRUE . . .
rec TRUE . . .
prog TRUE . . .
Text = Blank REC REW . . .

Condition

Modeclass: Operation
NOT(prog) AND
NOT(rec)

Text = Blank Text != Blank

FALSE
rec Text = Blank FALSE Text != Blank
prog Text = Blank FALSE FALSE
Display_Color = none green red

Condition
Assume Modeclass:

Operation with modes:
play, ff, rew, rec, prog

Dependency ONLY
Valid for Operation

Mode = prog

Figure 6. Example of Invalid Condition for Table Reference

 8

dependencies typical of complex systems. One fault
of this type manifested in one failure.

Variable Referenced Before Set
Three faults, resulting in 26 failures, were

related to incorrect logic that allowed variables to
be referenced before set.

Incorrect Implementation Of Mode Logic
The logic implementing event transitions of a

mode table assumed a dependency ordering,
however, the SCR model is a declarative model and
the order of the modes and event transitions within
the model has no relevance. One fault of this type
manifested in one failure.

Incorrect Code (likely cut/paste error)
After analyzing the code, the most likely cause

of the one failure appears to be a cut/paste error.

Incorrect Event Implementation
Although the order of the events in an event

table has no explicit meaning, event tables are often
implemented using sequences of if-then-elseif-else
statements that have order. Three faults related to
mapping the SCR declarative (i.e., unordered)
model into this ordered logic, resulted in 44 test
failures.

Hidden Bug (coincidental correctness).
A general test driver pattern is typically

employed to ensure that output objects are set to a
value other than the expected output to avoid
coincidental correctness, which can occur by the
output retaining the expected output from system
initialization or prior execution of the code. In this
case, the output was not set to a value other than
expected and the fault was therefore not detected.
Fixing this initialization revealed an error not
discovered previously.

Unmodeled Domain Knowledge
The FGS model includes a type of “momentary

contact” switch that automatically returns to the
OFF position whenever activated. The model
assumed this behavior and did not model it

explicitly. This resulted in an inconsistency
between the implementation and model, which
resulted in a eight test failure associated with three
faults.

Summary
This paper describes the ongoing effort to

evolve model analysis for complex systems to
support development of high reliability systems,
especially safety critical ones. The results illustrate
the importance of using tools to support the analysis
of complex systems. This historical evolution of the
original FGS model used inspections to remove
model defects and the SCRtool model analysis
capabilities to identify problems in individual
tables. The first generation TAF/T-VEC tools and
Offutt tool were able to detect additional faults
including those related to multiple tables. The latest
version of the TAF/T-VEC tools identified many
model defects that primarily involved multiple
tables. In addition, these tools helped uncover many
additional faults in the implementation. Model
defects and implementation faults similar to those
discovered occur commonly in complex systems.
As software-based systems continue to evolve, the
capabilities demonstrated can provide greater
assurance that these systems operate dependably.

Other Applications and Results
The core capabilities underlying this approach

were developed in the late 1980s and proven
through use in support of FAA certifications for
flight critical avionics systems [1]. Statezni
described how the approach supports requirement-
based test coverage mandated by the FAA with
significant life cycle cost savings [10; 11]. Safford
presented results stating the approach reduced cost,
effort, and cycle-time by eliminating requirement
defects and automating testing [11]. Safford’s
presentation summarized the benefits:

• Better quality requirements for design
and implementation help eliminate
rework in those phases as well as during
test

• Verification modeling can reduce the
time normally spent in verification test
planning by up to 50 percent

 9

• Test generation from a verification model
can eliminate up to 90 percent of the
manual test creation and debugging effort

• Both the number of test cases and the
phasing of their execution can be
optimized, eliminating test redundancy

• A known level of requirements coverage
can be planned, and measured during test
execution

The approach and tools described in this paper
have been used for modeling and testing system,
software integration, software unit, and some
hardware/software integration functionality. It was
used to identify the most likely cause of the Mars
Polar Lander crash [4]. It has been used for
functional security testing [3], as well as, critical
applications like telemetry communication for heart
monitors, flight navigation, guidance, autopilot
logic, display systems, flight management and
control laws, airborne traffic and collision
avoidance. In addition, it has been applied to non-
critical applications such as workstation-based Java
applications with GUI user interfaces and database
applications. The approach supports automated test
driver generation in a variety of open languages
(e.g., C, C++, Java, Ada, Perl, PL/I, SQL), as well
as, proprietary languages, COTS test injection
products, and test environments.

References
[1] Blackburn, M.R., R.D. Busser, T-VEC: A Tool
for Developing Critical System. In Proceeding of
the Eleventh International Conference on Computer
Assurance, Gaithersburg, Maryland, pages 237-249,
June, 1996.

[2] Blackburn, M.R., R.D. Busser, J.S. Fontaine,
Automatic Generation of Test Vectors for SCR-
Style Specifications, In Proceeding of the 12th
Annual Conference on Computer Assurance,
Gaithersburg, Maryland, pages 54-67, June, 1997.

[3] Blackburn, M.R., R.D. Busser, A.M. Nauman,
R. Chandramouli, Model-based Approach to
Security Test Automation, In Proceeding of Quality
Week 2001, June 2001.

[4] Blackburn, M.R., R. Knickerbocker, R. Kasuda,
Applying the Test Automation Framework to the

Mars Lander Touchdown Monitor, Lockheed
Martin Joint Symposium 2001 (JS01), June 4-6,
2001.

[5] Heitmeyer, C., R. Jeffords, B. Labaw,
Automated Consistency Checking of Requirements
Specifications. ACM TOSEM, 5(3):231-261, 1996.

[6] Faulk, S.R., L. Finneran, J. Kirby, and A. Moini.
Consortium requirements engineering guide-book.
Technical Report SPC-92060-CMC, Software
Productivity Consortium, 2214 Rock Hill Road,
Herndon, VA 22070, December 1993.

[7] Steven P. Miller and Karl F. Hoech Specifying
the Mode Logic of a Flight Guidance System in
CoRE

[8] Steve Miller, Specifying the Mode Logic of a
Flight Guidance System in CoRE and SCR. Second
Workshop on Formal Methods in Software Practice
(FMSP’98), Clearwater Beach, Florida, March,
1998.

[9] Offutt, A.J., Generating Test Data From
Requirements/Specifications: Phase III Final
Report, George Mason University, November 24,
1999.

[10] Statezni, David, Industrial Application of
Model-Based Testing, 16th International
Conference and Exposition on Testing Computer
Software, June 14-18, 1999.

[11] Safford, Ed, L. Test Automation Framework,
State-based and Signal Flow Examples, Twelfth
Annual Software Technology Conference, 30 April
- 5 May 2000.

[12] Tsai, W. T., D. Volovik, T. F. Keefe,
Automated test case generation for programs
specified by relational algebra queries, IEEE
Transactions on Software Engineering, 16(3):316-
324, March 1990.

[13] White, L.J., E.I. Cohen, A Domain Strategy for
Computer Program Testing. IEEE Transactions on
Software Engineering, 6(3):247-257,May, 1980.

