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Abstract Contents 

This paper is associated with a four-part Webinar Series 
presented in 2008 that discusses Model Driven Engineering 
related topics that are now relevant to System and Software 
Consortium (SSCI) members. Some SSCI members  were 
early adopters of Model-Based approaches, and SSCI has 
expertise and lessons learned from working with these early 
adopters dating back to 1995. Customers are now asking 
SSCI members to use MDE approaches and tools. However, 
for some SSCI members there is a large knowledge gap and 
they don’t know how best to adopt MDE or even get started. 
There are concerns related to modeling techniques, 
organizational process changes, tools, and project estimation 
and cost. In addition, there are good and bad ways to 
integrate model-developed components with those developed 
using other more traditional approaches.  

A key objective of this paper and Webinar series is to clarify 
what types of models can be used to support lifecycle 
activities, so that members can better understand where they 
need to invest to achieve immediate cost saving or long-term 
benefits. Therefore, the focus of MDE from the perspective of 
this paper is what information can be derived from model and 
associated modeling tools that contributes to the 
development, verification, evolution, maintenance and 
management of the software systems that our members 
develop. 
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This paper, like the Webinar series, is a trial. The paper describes information presented at 
the Webinar series sessions. During the Webinar, tools were mentioned, but these are 
provided as examples. The Consortium is not recommending any particular tool or technology, 
but rather seeks to make members aware of the capabilities of different tools. 1 

What Do You Think? 
The author is interested in any comments you have regarding the use of the Webinar Series 
and coverage of Model Driven Engineering, especially concerning the following topics: 

• Was the Webinar Series a useful mechanism to disseminate information or do 
you prefer other means such as classroom training? 

• The organization of this whitepaper is aligned with the Webinar Sessions – do 
you have any other recommendations that would improve the delivery of this 
information? 

• What other Model Driven Engineering topics would you like covered in a future 
Webinar, paper, or other delivery mechanism? 

Please send your response to these questions and any other comments to ask-
ssci@systemsandsoftware.org, referencing the title of this paper in the subject line. 

                                                 
1  
BridgePoint is a registered trademark of Mentor Graphics. 
IBM™ is a trademark of the IBM Corporation 
Capability Maturity Model®, CMM®, and CMMI®  are registered in the U.S. Patent and Trademark Office by Carnegie Mellon 
University 
Java™ and J2EE™ are trademark of SUN Microsystems 
Java is trademarked by Sun Microsystems, Inc. 
Linux is a registered trademark of Linux Mark Institute. 
Mathworks, Simulink, and Stateflow are registered trademarks of The Mathworks, Inc. 
MagicDraw is a trademark of No Magic, Inc. 
MATRIXx is a registered trademark of National Instruments. 
MVS is a trademark of IBM. 
Object Management Group (OMG) : OMG's Registered Trademarks include: MDA®, Model Driven Architecture®, UML® , 
CORBA®, CORBA Academy®, XMI® 
OMG's Trademarks include, CWM™ , Model Based Application Development™, MDD™, Model Based Development™, Model 
Based Management™, Model Based Programming™, Model Driven Application Development™, Model Driven Development™  
Model Driven Programming™, Model Driven Systems™, OMG Interface Definition Language (IDL)™, Unified Modeling 
Language™, <<UML>>™ 
OMG®, MDA®, UML®, MOF®, XMI®, SysML™, BPML™ are registered trademarks or trademarks of the Object Management 
Group. 
PowerPoint is a registered trademark of Microsoft, Inc. 
Real-time Studio Professional is a registered trademark of ARTiSAN Software Tools, Inc. 
Rhapsody is a registered trademark of Telelogic/IBM. 
Rose XDE is a registered trademark of IBM. 
SCADE is copyrighted to Esterel Technologies.  
Simulink is a registered trademark of The MathWorks. 
Stateflow is a registered trademark of The MathWorks. 
Statemate is a registered trademark of Telelogic/IBM. 
TAU/Developer is registered to Telelogic/IBM. 
T-VEC is a registered trademark of T-VEC Technologies, Inc.  
UNIX is a registered trademark of The Open Group. 
VAPS is registered at eNGENUITY Technologies. 
Visio is a registered trademark of Microsoft, Inc. 
VxWorks is a registered trademark of Wind River Systems, Inc. 
Windows is a registered trademark of Microsoft Corporation in the United States and other countries. 
XML™ is a trademark of W3C 
All other trademarks belong to their respective organizations. 
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"Over time, code gets complicated, and you want to be agile and 
change it," he said. "This (modeling) is definitely an area that's 
open for improvement." – Bill Gates Final Keynote  

June 3rd 2008 
http://www.informationweek.com/news/software/development/sho
wArticle.jhtml?articleID=208401781 

Microsoft may not have been considered a major player in modeling for many years, at least 
what might be considered the formative years of modeling, but Gates in his final keynote 
address talked about how modeling will transform software development for Microsoft 
customers, especially in how the software development lifecycle is managed.  

Introduction 
Some System and Software Consortium (SSCI) members were early adopters of model-based 
approaches, and SSCI has expertise and lessons learned from working with these early 
adopters dating back to 1995. Customers are now asking SSCI members to use Model Driven 
Engineering (MDE) approaches and tools. However, for some SSCI members there is a large 
knowledge gap and they don’t know how best to adopt MDE or even get started. There are 
concerns related to modeling standards, modeling techniques, organizational process changes, 
modeling tools, and project estimation and cost. In addition, there are good and bad ways to 
integrate model-developed components with those developed using other more traditional 
approaches.  

The evolution of modeling standards2 that cover enterprise (e.g., DoDAF, MoDAF), systems 
(e.g., SysML, MARTE), software (e.g., UML) and hardware provides a common basis for the 
development of interoperable modeling tools. Tool integration standards related to work by the 
OMG, INCOSE, and AP233, as well as Eclipse for open source development have resulted in 
many tools to cover various aspects related to modeling, simulation, code and document 
generation, and analysis. However, model and tool integration is still challenging, and member 
companies want to understand more about the specifics of modeling tools and applicability to 
specific domains and types of system (e.g., embedded versus IT/enterprise).  

Even with the influence and availability of model-based tools within the university systems 
where new graduates have the modeling skills, domain knowledge and process guidelines are 
required for developing complex systems. Open source and commercially available tools are 
maturing, but MDE may not be right for all projects. For SSCI Member organizations, to 
minimize program risk, it is important for new MDE users to understand tool limitations and 
issues, but it is even more important to determine how specific tools and modeling approaches 
can be aligned with existing processes and the skills of people. 

                                                 
2 See Session 4 for more information on Department of Defense Architectural Framework (DoDAF), UK 
Ministry of Defence Architectural Framework (MoDAF), System Modeling Language (SysML), Modeling 
and Analysis of Real Time and Embedded Systems (MARTE), and Unified Modeling Language (UML). 
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Finally, some members have stated that their modeling efforts have not provided the significant 
results that they have expected. Too often the selected modeling approach has resulted in 
models that were barely more than cartoons, often related to models that represent only 
structural system aspects. Models must minimally represent structural and behavioral system 
aspects in order to automate code generation, but modeling approaches to support the system 
interactions such as timing, scheduling, and resource allocation are being integrated with MDE 
approaches and tools. Ongoing research is providing insight into complex problems such as 
parallel computing and concurrency. The results will lead to improved model-based code 
generation and model analysis required to provide greater assurance of the dependability of 
today’s complex distributed systems. 

MDE Webinar Series and Organization of Paper 
This paper provides supporting documentation for the four-part Webinar series. Figure 1 
provides a perspective on the Webinar sessions content. Session 1 provided an overview of 
how modeling types, process from a return on investment (ROI) and tool technology are related. 
In addition, session 1 introduced modeling concepts, terminology, approaches, process and 
organization implications, benefits, limitations, risks, and the state of the tools. Session 2 used a 
modeling maturity model to discuss ROI and key practices, including modeling guidelines and 
recommendations useful for project proposals and model adoption. Session 3 described tool 
capabilities, and the importance of tool integration that is needed to achieve full lifecycle 
support. Session 4 included more advanced topics such model integration and challenges from 
various engineering domains (e.g., software, hardware, mechanical, etc.) up through the system 
and system-of-system (enterprise) levels, while making some predictions on where MDE is 
going in the future. 
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Figure 1. Perspective on Model Driven Engineering Presentation 
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The webinar sessions topics were: 

• Session 1: What's MDE and Why Should I Care? 
• Session 2: How Does MDE Impact My Process?  
• Session 3: What's Happening with MDE Tools? 
• Session 4: What's Next to Come with MDE? 

The paper presents the webinar material roughly in the same order as the information was 
presented in the Webinar sessions. Many of the key topics presented in Session 1 are further 
explained in greater detail in one or more of the other sessions. The presentations and podcasts 
from the Webinar can be obtained from the Members Only section of the SSCI website 
www.systemsandsoftware.org under Training, Event Archive, and Webinars menu.  

 

Who Should Read This Document? 
This paper, especially Sessions 1 & 2, is applicable to most of the SSCI member personnel 
involved in software system engineering including: 

• Directors and managers 
• Capture managers & teams 
• Program and project leads 
• System and software engineers: architects, developers, integration and test 
• Process developers 
• Customers 

Sessions 3 & 4 provide more technical information related to lifecycle coverage, evolving 
standards, and leading-edge tools. These sessions should provide all readers a high-level 
perspective on tools and technology, but the final few subsection will probably be more 
beneficial to technologists. 

Session 1: What's MDE and Why Should I Care? 
This session provides a broad overview of areas related to MDE and provides high-level 
information and key technical details needed to understand the difference between models, 
modeling, and model driven engineering. 

What’s Modeling About? 
One key aspect of models and modeling is abstraction, which supports communication through 
different views with various levels of details. Details of importance can be emphasized while 
other details are not described. For example, a mobile of the solar system as shown in Figure 2 
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shows the number of planets and might show the relative position of the planets, but it does not 
accurately show the plant’s size or distance from sun. Figure 3 provides a different perspective 
on the planets of the solar system and emphasizes the relative size of the planets. To get an 
accurate perspective of a problem or solution often requires several views with some type of 
formal description of the relationship between the views. For example, the distance from the sun 
to each planet needs to be described using consistent units (e.g., miles). 

 
Figure 2. Mobile 

 
Figure 3. Relative Size of Planets 

What’s Model Driven Engineering About? 
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MDE is about the use of relevant abstractions that help 
people focus on key details of a complex problem or solution 
combined with automation to support the analysis of both the 
problem and solution, along with the mechanism for combining 
the information collected from the various abstractions to 
construct a system correctly. Some of the key abstractions can 
be categorized into types, such as:  

• Structure – systems, subsystems, components, 
modules, classes, and interfaces (inputs and outputs) 

• Behavior (functionality) 
• Timing (concurrency, interaction) 
• Resources (environment) 
• Metamodels (models about models) 

Some of these abstraction concepts have existed and evolved with programming languages, but 
within a programming language the combination of these views may be lumped or tangled 
together (e.g., spaghetti code). Details such as the protocols for communicating, concurrency 
concepts such as threads, and specialized interfaces to hardware might be combined with 
domain-specific functional details such as financial computations for tax processing, control law 
processing for aircraft, or weapon delivery rules. Through good development practices 
programs can be better structured and layered, but models provide a means of systematically 
separating these views, because certain types of models are constrained to permit only certain 
types of information. MDE automation relies on automated means for analyzing the views, 
deriving information from one-or-more views, and ultimately pulling sets of views together 
correctly to produce some type of computationally-based system. 

Historical Context of Modeling 
Models and modeling are not new. Without going too far back in history, third generation 
languages such as C raised the level of abstract over assembly language. Computer-Aided 
Software Engineering (CASE) tools provided other abstractions with some tooling, but the vision 
of full automatically generated software was more challenging than could be addressed with 
those types of models. The Unified Modeling Language (UML) attempts to unify the best of all 
modeling practices with standardized views and diagrams, but the goal of UML-to-code has 
some challenges that are discussed in Session 3. For specific domains related to control laws, 
the reality of model-to-code has been realized. For example, at a Consortium member event in 
1996 members discussed the realization of transforming models to code as reflected in Figure 
4. Models represent requirements or design information independent of language, platform, and 
architecture. Models are translated into implementations using tailorable code generation to 
specific architectures and languages. Configuration parameters are input to the code generators 
to specify platform details needed for the target code. The control law software for the F16, F22, 
and F35 (JSF) aircraft has been produced using tools such as the Mathworks Simulink and 
National Instruments MATRIXx dating back to the 1990s. The models are a valuable asset that 
continues to evolve even though the underlying platform continually changes. Models are key 
intellectual assets of the company. 
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Figure 4. Model Based Code Generation 

Next Disruptive Technology 
This form of model-based generation (the term used in 1996) was focused on code generation. 
In a Raytheon article in 2003, MDE was called the Next Disruptive Technology that would 
have impact in 5 to 10 years. The article that contained quotes from leaders in the field stated: 

The disruptive technology to enable this development is predictive mathematical 
modeling of software systems. Such modeling will lead, for example, to model-based 
generative programming, producing executable code that is never touched by human 
hands, even—especially—in maintenance phases. A true “disruptive” technology is one 
that is adopted on its inherent virtues even if its payoff is not yet realized in application or 
commoditization. It provides a temporary step backward in order to facilitate greater 
gains later. Mathematical model-based development will cost the industry in retooling 
and retraining, but it will be to the software industry what the assembly line was to the 
automobile industry. In related ways, model-based process compliance will show 
similarly tangible returns, which may not be realized until the V&V stage. If a disciplined 
model-based development process is adhered to for the entire development 
lifecycle (there’s another step backwards), V&V tools will close the development 
loop, doubling as requirements management tools, and the development cycle will 
become a living dynamic process with stability and correctness properties of its 
own. 

In working with SSCI organizations, some users are often focused on code generation. It is 
important to note in the bolded text that this vision includes not only code generation, but also 
model analysis, verification and validation, requirements management, and configuration (or 
model) management. A conceptual view of an environment to support this vision is shown in 
Figure 5. Conceptually, the domain experts communicate with modelers (or ideally produce 
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models themselves). Model analysis, such as model checking, proof of properties (e.g., safety, 
timing) can be validated early. Different transformation mechanisms produce code for various 
platforms and languages, with fully automated testing to ensure that the generated code 
operates properly in the different target environments, with full requirement-to-test traceability, 
and configuration management based directly on the source model. There are many process 
steps that need to be addressed and modeling technologies that need to be advanced and 
integrated to support this view. Additional perspectives are provided throughout the paper. 
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Figure 5. “Near” Idealized View of MDE 

Domain-Specific Code Generation of Functional Threads  
In the 1990s, several SSCI member companies were using automatic code generation from 
MATRIXx models as reflected in Figure 6. Most now use Simulink for these same types of 
applications. An important point to note is that the models were used to produce some of the 
code from the system. Too often first time users are often misled into thinking that model-based 
tools can be used efficiently to generate all of the code in the system. Some of the code 
generators might be good at producing code for some aspects of the system, but not good at 
other aspects of the system such as real time control. For example, as reflected by Figure 6 
code internal to the threads represents control system computational type code, and this code is 
embedded and wrapped by manually produced code that is used for controlling the various 
tasks of the system. Members need to be more aware of what types of code can be produced 
and used. These characteristics and the different levels of model-based capabilities are 
discussed in terms of model maturity. 
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Figure 6. Control System Code Generation 

MDE Maturity Model 
There are numerous proposals for a Modeling Maturity Model (MMM) that follows in the spirit of 
the Capability Maturity Model Integrated (CMMI®) and Software Capability Maturity Model (SW-
CMM®) for discussing model maturity. The levels shown in the model, especially the higher 
levels, rely more heavily on formalized models that provide some form of tool related automation 
and methodologies. 

Sources: Jan Aagedal, SINTEF, September 2006, Anneke Kleppe and Jos Warmer in their book MDA Explained Addison-Wesley
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SSCI-2008002-MC Version  1.0 September 2008 

 11 of 53 

The types of models and associated tool automation often directly relate to the completeness of 
the artifacts required to produce a dependable deployable system. For example, the modeling 
approach associated with Figure 6, based on Simulink or MATRIXx models are often highly 
functional and specified using modeling notations (aka modeling constructs) that are known to 
control systems domain specialists. This type of modeling may not apply to other types of 
systems in other application domains such as financial or information technology. Therefore 
other types of model notations or views might be required. An example in the data modeling 
domain is Erwin, which has been used for years to support database design. Organizations that 
develop using an object-oriented (OO) method and language might be new to modeling or 
considering adoption. The UML is now supported by tools and modeling approaches that might 
be more applicable to developers that have been using OO design methods.  

Too often members have thought that simply using models will result in higher ROI, but 
unfortunately that is not always the case. There are a number of limitation and issues with using 
UML and the associated tools for automatic code generation. Session 2 discusses more about 
modeling maturity, and in particular discusses how to use concepts like the MMM from an ROI 
perspective and from a process practices point of view that defines key modeling practices 
required to maximize the ROI. 

Unified Modeling Language 
UML is a general purpose modeling language, and attempts to unify many modeling practices. It 
allows almost everything to be modeled, and because of that it has grown to be extremely large 
and complex, including an 800 page specification. UML provides a set of diagrams to depict 
software structures graphically, as shown in Figure 8. Diagrams are developed as separate 
entities that express different aspects of software, however UML cannot fully define the 
relationships between diagrams and detailed behavior is difficult to define in UML. Consistency 
across diagrams is largely left to be resolved by the designer, and without detailed behavior 
code generation can be limited to structural aspects of the code. As a result tools often combine 
structural aspects of UML models with manually developed code to specify the behavior. This 
can result in the need for synchronization between manually developed code and the models.  

 
Figure 8. UML Diagrams 
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There are other approaches for specifying behavior such as the use of action languages that 
are used with UML diagrams in place of code. Domain Specific Languages (DSLs) are also 
emerging, because UML cannot provide inherent support for every application domain. DSLs 
are more precise, more constrained, with clear semantics. Tool support makes DSLs a reality, 
and metamodels are often used to define these more specialized languages. UML is sometimes 
used for defining a DSL. DSLs are not new, for example Backus Naur Form (BNF or EBNF) with 
tools yacc and lex is a good example of a DSL and associated set of tools that have been 
around for decades. Simulink might be one of the best known DSLs. DSLs and metamodels are 
discussed in greater detail in Sessions 3 and 4. 

Confusing Terminology  
The specialization of modeling approaches, standardization, and tool support has led to a 
number of different terms that relate to MDE. The “model driven engineering” or MDE is not 
currently trademarked and therefore it is used to characterize the general set of model-based 
practices. There are many related MDE approaches, and the following provides a non-
exhaustive list of a few commonly used terms: 

• MDA®: Model Driven Architecture® 
• MDD™: Model Driven Development 
• MDSD: Model Driven Software Development 
• MDSE: Model Driven Software Engineering 
• MIC: Model Integrated Computing 
• DSL: Domain Specific Languages 
• Software Factories 
• MBT: Model Based Testing 

There are different tool companies that support these approaches too. For example, MDA is an 
OMG standard, and many companies were involved with the formalization of this standard. In 
2008 there are about 60 companies listed on the OMG website that provide MDA-related tools 
or services. MDA is based on a set of OMG standards such as: 

• UML – Unified Modeling Language  
• MOF - Meta Object Facility 
• XMI – XML Metadata Interchange (XMI®) 
• OCL – Object Constraint Language 
• CWM - Common Warehouse Metamodel 

MDA proposes two separate parts of specification: 

• Platform Independent Model (PIM) are used to specify structure and behavior 
related to a specific domain or application 

• Platform Specific Model (PSM) is a specification of implementation of the 
functionality on a specific technology platform. 

Transformations are iteratively used to transform PIMs into PSMs and finally deliver running 
systems. More details are provided on tools and transformation related to MDA in Sessions 3 
and 4. 
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Session 2: How Does MDE Impact My Process?  
SSCI members that consider adoption of MDE often have higher levels of maturity as defined by 
the CMMI® and SW-CMM® guidelines. Although a high level of process maturity is not required 
to get started with MDE, those concerned with process maturity need to understand the process 
impacts before they start using MDE on programs. These considerations include not only the 
typical development-related processes and artifacts, but also important information that can go 
into program proposals that identify program milestones and deliverables, documentation, 
configuration management, as well as the need for education and training requirements of both 
the company team and potentially the customer. Some of these process related issues are not 
well understood by the proposal teams. 

For organizations that use a more agile process, MDE is often iterative in nature with continuous 
builds and testing supported by automatic code generation and systematic test generation. An 
MDE approach can complement an agile process while providing significant productivity 
benefits with added rigor to support complex system development. This session includes 
information on how agile teams most often use modeling. 

This section of the paper includes: 

• Process-related considerations impacted by the use of MDE 
• Potential changes to lifecycle schedule and deliverables that can impact 

proposals  
• How and why to conduct pilot projects to reduce the risk of adoption 
• The need incorporate modeling standards 
• The importance of modeling reviews 
• Project types that might not be appropriate for MDE 

Model Maturity: ROI versus Key Practices 
Figure 9 adds a few examples of modeling approaches that are associated with the MMM levels 
initially shown in Figure 7 to explain capabilities versus ROI. Consider the following examples: 

• The MATRIXx example shown in Figure 6 identified as MATRIXx 1996 in Figure 
9 might be considered about a Level 4, because precise models are used to 
produce the code.  

• The JSF Simulink 2002-2008 example identifies a modeling approach that might 
be a slightly higher Level 4, because Simulink models are more expressive in 
2008 than they were in 1996.  

• UML-oriented modeling tools and methods vary significantly and some of the 
earlier versions (e.g., UML 1 and UML2) used models integrated with text or 
code to produce the code and the ROI can vary significantly.  

• The xUML (i.e., called executable UML) is a UML-variant supported by a few tool 
vendors and the tools combine UML diagrams with a programming language 
independent action language to capture the behavior of a model formally; these 
tools often produce code directly from the models and the action language can 
be targeted to different platforms thus providing higher ROI than UML based 
tools that use code to specify the functional behavior.  
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• The survey data provided in Figure 10 suggests that agile teams often do use 
models, and because the whiteboard sketches are considered valuable as 
reflected in Figure 11, those types of models help structure the communication of 
an agile team during early phases of development. Although these whiteboard 
models are informal, they add value as reflected in Figure 11. It is not necessary 
to have a high level of modeling maturity to get ROI.  

• As shown in the upper right of Figure 9, full model-based code generation 
approach with model analysis and automatic test generation, will likely be 
considered mature and provide high ROI, although such methods and tools 
probably do not exist. For example, models of concurrency that capture the 
distributed characteristics of the system would be needed, and this is still a topic 
of research discussed in Session 4. 

• DSL and MDA approaches will cover the spectrum; although many DSL are 
focused on code generation or other types of formal analysis, some system-level 
DSL like SysML might only formalize the descriptions of the system structure. 
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Figure 9. Model Maturity versus Time 

Low maturity is not necessarily bad, but what members need to know is that if they are using a 
lower maturity modeling approach, they need to be sure that they are not making claims in 
proposals, contracts or project estimates that assume a high ROI. Consider the following 
example scenario of a project that might be using UML models supplemented by text and code. 
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Figure 10. Agile Survey on Use of Modeling 

 
Figure 11. Value of Agile Work Products 

Example Project Scenario 
As discussed in Session 1, some organizations that may have tried MDE, and in particular some 
type of UML-based modeling process and tool might have lived through the following scenario. 

1. Project uses models that are initially a proper reflection of software being built 

- Models show structure of actual code (e.g., class diagram) 

- Provide documentation for detailed design and code 
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2. Transition of model to code is done mostly manually. The models represent structure of 
code through class diagrams, but the behavior is not sufficiently formal and thus a 
programming language is used to complete the behavioral parts of the model. 

3. With the passage of time, and continual changes, the models do not reflect the actual 
code anymore. The code is updated until the customer is satisfied or the code is 
changed when new requirement or bug fixes are required. 

4. The code is now the product, because keeping the models up-to-date is often 
considered to be unimportant and too time consuming. 

5. The models that were once perfect as code documentation are now useless. 

Continuing with the theme of the following example, Figure 12, based on a diagram originally 
created by John Daniels3, reflects on some of the issues that often occur with UML modeling 
where the behavior is described in code. This particular process of synchronizing the code with 
the models is sometimes referred to as round trip engineering. As reflected in the scenario, 
when opposing forces such as time and schedule pressures begin to impact a project, the focus 
stays on the code and not the models. Armed with knowledge of these common pitfalls, there 
are a few recommendations and guidelines that potential new users should consider during the 
process of planning for MDE adoption. 

 
Figure 12. Another Perspective on Model Levels 

                                                 
3 MODELWARE – 511731 – D2.9 MDD TCM Guidelines – Revision 1.5  

Level 5 Level 4 Level 3 Level 2Level 1 Level 5 Level 4 Level 3 Level 2Level 1 
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Process Guidance - Tools and Methods 
MDE tools and standards are evolving, but methods and usage standards are not inherent in 
the tools, and organizations must define methods, standards and tool usage that align with their 
project and organizational drivers. In addition, they must align their ROI expectations when 
developing proposals and cost and schedule estimates. There are a number of effective ways 
for adopting and preparing for the use of MDE. A non-exhaustive list of guidelines follows: 

• To start, use pilot projects to thoroughly understand the MDE tools and methods. 

Begin with some type of system application, or subsystem that is well understood so that 
process comparisons can be made. The comparison may be subjective, so that is why it 
is important to use some type of existing system, ideally one that was recently 
completed. 

• Think about a modeling methodology that aligns with existing processes. 

Many of the tools do not prescribe a particular method, but based on the ways they 
produce code, or documentation, may impose some process constraints that may not 
align with your organizational processes. Consider tool alternatives and select a tool or 
tool that fits in with process and technology change objective and constraints of your 
project and organization. 

• Define methods for your project that constrain the tools to meet your specific 
needs. Advanced users can create or extend tools that use languages such as 
the Object Constraint Language (OCL) that checks to ensure guidelines on 
developed models are satisfied. 

• Plan for integration of system/hardware modeling with software modeling tools. 

Understand the interfaces between the different hardware and software modeling tools 
and methods to ensure that inconsistencies that can cause late integration problems are 
addressed before integration. 

• Define lifecycle objectives based on understanding the tool capabilities and 
current state of organizational capabilities.  

For example, for a first time user it might be reasonable to assume that the modeling will 
be used for structural code generation and full document generation from models. 

• Understand auto-code generation capabilities. 

- Understand what aspects of structural and behavioral models contribute to code. 

- Identify code generation parameters or template, because different parameters can 
significantly impact the way code is produced (e.g., code may be optimized for real- 
time performance as opposed to memory space efficiency). 

- Identify modeling constructs that produce “good” code, and add that information to 
methods guidelines and standards. 

- Create baseline models for re-validating code generator from version-to-version of 
the tool, and update and maintain those validation models with each new tool 
version. 

• Understand the run-time environment that might be assumed by the code 
generator. 
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- Assess the impacts of run-time overhead, and identify if or how the run-time code 
can be configured, or determine how to produce code that does not rely on a run-
time environment. As reflected by Figure 6, it might be necessary to wrap generated 
code with run-time control such as tasking or threads that has been created through 
manual code development. 

- Plan to address concurrency issues external to code generation. See more in 
Session 4 on the subject of concurrency. 

• Determine how model artifacts support required document generation and 
assembly. 

- The organization of the modeling artifacts can impact document generation. 
Configuration management of the model can also impact the document generation.  

- Establish how requirement-to-test traceability is documented, and understand how 
links must be created through the model views and associated model artifacts. 

- Ensure that the customers understand the new types of documents and deliverables. 

- Take into consideration requirements for integrating system, software, and hardware 
documentation deliverables. For example, how are the interface control documents 
related to the models? 

• Understand how testing is going to be performed. 

Evolution and maintenance can consume seventy percent of the product development 
lifecycle and testing is often far more critical once the initial releases of the system have 
been developed and deployed, however testing-oriented support from models is not 
often addressed during the modeling and tool selection process. 

- During the pilot project, determine if the selected modeling tools provide support for 
automatic test generation. 

- Determine if the auto-code generation or run-time environment constrains how 
testing and test coverage is accomplished. Auto-code generation may change the 
name of model variables in the auto-generated code. Determine if there is 
information that maps model names to test interfaces. 

- Add guidelines to ensure that the modeling methodology enforces design for 
testability. 

- If applicable, determine and plan for the tools and methods for documenting test 
coverage. 

Process Methods and Configuration Management 
Many of the activities discussed in terms of methods and the associated tooling should be 
formalized and incorporated into project-specific methods and review procedures. 

• Establish standards and reviews for use of the tools. 

Describe modeling constructs that are permitted for use, as well as those that should not 
be used, because they can result in poor quality code (e.g., performance is too slow, not 
designed for failsafe behavior of safety critical applications). Ensure the guidelines are 
created and review processes are used. Too often organizations that understand the 
importance of code reviews do not follow those same types of guidelines for modeling. 
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The guidelines should also identify: 

• Code generation parameters and templates, for example, variations in the 
parameters can have a significant impact on code size or code speed. 

• Naming conventions 

• Project structure and organization 

• Determine the modeling artifacts that must be configuration controlled. 

• Model management and model merging may not be as straight forward as code-
based and file-based configuration management. 

• Establish guidelines for how the tools must be version controlled to ensure 
deliverables are reproducible from source artifacts maintained under 
configuration control. 

• Plan a process to understand impacts of new tool versions prior to permitting the 
new tool results to be deployed. Tools can have significant changes from version 
to version and the outputs produced from one version might be different or 
unexpected in the next version. 

• Assess the potential impact of tool chain integrations. 

Proposal Impacts 
Some members have stated that the proposed use of modeling has been a contributing factor to 
winning a proposal award. Other members are struggling to advance their modeling capabilities, 
because the customers are requesting the use of model approaches on programs. In either 
case, there are a few things that proposal team should ensure are addressed in the proposals, 
including:   

• Ensure proposal costs and schedules align with ROI that is achievable. 

It is important that the modeling capabilities of the organization align with the expected 
ROI gains. Often an advanced demonstration team may be involved in the proposal 
process, but it is important that the development team have proper training and 
understanding of the guidelines and standards.  

• Make sure that the tool acquisitions process has been completed and understand 
the implications of tool licensing. 

• Ensure that milestone schedule aligns with new modeling process. 

Modeling can impact traditional milestones. Typical customer review processes that 
includes preliminary design review (PDR) and critical design review (CDR) are often 
based on paper documents. Modeling may use alternative forms. Ensure that the 
customer understands the information. This may require training for the customer. 

Precise models that replace traditional documentation need more details. Understand 
how they can be presented incrementally as they evolve rather than as a completed 
document. 

• Prepare subcontractors if the interface between the teams is going to use 
models. They too must have processes and procedures in place to support 
usage and development from models. 
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• Be prepared to train customer and subcontractor on the project-specific use of 
models and their associated artifacts and measures. 

Lifecycle Evolution and Maintenance 
Modeling often starts with a new project and the early lifecycle activities such as architecture 
and design often get the most focus, however some of the biggest gaps in the design of the 
modeling process don’t account for longer term concerns such as testing that can account for a 
significant percentage of the effort during the evolution and maintenance of a program. 
Therefore it is recommended that the following topics be considered as early as possible: 

• Verification and validation 

Modeling practices are generally focused heavily on code production, but verification is 
not guaranteed and testing is still required. Models can have defects, and although 
review processes should be used in an attempt to find model defects, defects can be 
hidden in complex models. Modeling tools are advancing with additional analysis and 
test generation capabilities; factor these long-term needs into the pilot project and model 
tool evaluation process. See Session 4 for more information on model analysis and 
testing support. 

• Integration between systems, hardware, and software 

The methodology and artifacts handoffs should be planned and coordinated. Tools for 
systems models may not integrate with software or hardware modeling tools. The same 
issues at system-of-system levels interfaces between systems can have significant 
mismatch, especially when different teams, disciplines, and subcontractors are involved. 
See Session 4 more information. 

Transitional Pilots 
Planned pilot projects that precede the project development are strongly encouraged, but some 
members have long running projects, and may be forced into updating their capabilities during a 
program. Transitional pilots can provide stakeholders quickly demonstrated evidence within their 
organization to commit to updating their process to use modeling on a scheduled deliverable. In 
addition, these pilots help reduce the risk of over commitment, because they can provide some 
insight into ROI from modeling processes and tools. 

• Transition from a pilot project to a thread of an existing project 

- Select a thread that is likely to change often or have features extend it 

- The most leverage and benefits come from reusing and evolving one or more related 
models 

• Identify the right projects for transitioning from an existing process to a new 
process to meet schedule 

- Select a project prior to requirement phase so that modeling can start early and help 
improve requirements, while providing sufficient time to collaborate with design team 
to improve the interfaces to support testability, which reduces risk of schedule 
slippage caused by the startup overhead of a new modeling process. 
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Session 3: What's Happening with MDE Tools? 
Tools are an essential part of MDE. Tools formalize modeling information that includes 
structural information such as architectural elements, interfaces, behavioral information, and 
other system properties. The formalization permits tools to analyze, transform, trace and 
simulate model information, as well as synthesize and generate other artifacts such as code, 
tests, documentation, and reports. This section discusses the various types of tools that support 
MDE, and discusses commercial as well as free open source tools without promoting any 
particular set of tools. No one tool provides complete support for the entire lifecycle and 
therefore tool chains and associated standards are emerging to provide greater lifecycle 
coverage. This session introduces some advances such as DSLs which are discussed in more 
detail in Session 4. 

The objective of the Webinar and this session in particular is to cover tool capabilities without 
recommending any particular tool or vendors. Tool and associated vendors are mentioned as 
examples, but this should not be taken as a recommendation by SSCI. 

Tools Targeted to Specific Domains 
SSCI members produce systems in many different domains, and some of the modeling tools are 
targeted towards embedded systems, while other are more applicable to information or 
enterprise systems. Therefore, when looking at the various tool technologies it is necessary to 
consider the application domain needs too.  

Embedded systems have been developed and verified using models dating back into the 1980s. 
They often have more variation when it comes to hardware, which is sometimes specialized or 
custom made for some applications. Embedded systems often have requirements for high 
assurance, meaning that systematic verification is often necessary. These types of systems 
may also be used on safety critical applications, and may also require run-time environments 
that have been proven to meet safety critical needs. The software involved in controlling 
mechanical devices such as aircrafts or vehicles often relies on control system models such as 
Simulink as mentioned in Session 1. 

Enterprise or IT systems may have in the past used data modeling for the database, but there is 
an emergence of models being used on these types of system. It’s often difficult to apply models 
to legacy and mainframe development, but new areas such as web and service-based systems 
are prime targets for model driven engineering, and some of the tool are targeted to these 
specific domains. 

Historical Perspective of Tool Suppliers 
In 2004, the SSCI Board of Directors authorized a project to report on the benefits and risks of 
“automatic code generation” from modeling tools. A SSCI report (SPC-2004010-MC) covered 
several different tools as reflected by the representative sample shown in Table 1. Many of the 
tools in the table exist today, but the owner of the tools may now be a different company due to 
acquisitions. The purpose of the report was to categorize the different types of code generation 
tools, and describe the benefits and risks for using and adopting the tools. Many of these tools 
have continued to evolve and some products provide significant lifecycle coverage. Some also 
promote certain methods, while others attempt to be method independent. 
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Table 1. Automatic Code Generation Survey 

Tool Name and Company Category Comment
Simulink
Mathworks
MATRIXx
National Instruments
SCADE
Esterel Technologies
BridgePoint
Project Technologies now Mentor

Statemate
Ilogix now IBM/Telelogic
Rhapsody
Ilogix now IBM/Telelogic
Rose XDE
IBM
Real-time Studio Professional
Artisan
TAU/Developer
Telelogic now IBM/Telelogic
VAPS Behavioral
eNGENUITY Technologies Translative 

(hybrid)

Behavioral Used for control system modeling such as aerospace, avionics, automotive, and can 
include state chart diagrams in a model. Model analysis and test generation support 

Behavioral Used for control system modeling such as aerospace, avionics, automotive. Combines 
state transition diagrams. Model analysis and test generation support available from several 

Behavioral Used for control system modeling such as aerospace, avionics, automotive, and energy. 
Combines state chart diagrams. Has some support for verification.

Translative Executable and translatable Unified Modeling Language (xtUML), with profile that relies on 
a language that extends UML 2.0.

Behavioral State machine-based, with formal action language. Used for embedded systems with 
support for test.

Structural / 
Elaborative

UML 2.0, with coding framework for C, C++, and Ada. Some support for test execution.

Structural / 
Elaborative

UML 2.0, coding framework-based.

Virtual Applications Prototyping System (VAPS) is a tool for building data-driven, interactive, 
graphical user interfaces, or human-machine interfaces.

Structural / 
Elaborative

UML 2.0, coding framework-based.

Structural / 
Elaborative

UML 2.0, coding framework-based.

 

Lifecycle Tool Integration (aka Tool Chains) 
There is still a need to provide greater coverage over the lifecycle, going beyond code 
generation and document generation. Most of the commercial and free open source tools 
provide varying levels of support for: 

• Model development (e.g., model editors) 
• Code generation 
• Document/report generation 
• Traceability – diagram relationships 

There is greater variability and less coverage when attempting to address capabilities such as: 

• Simulation/animation 
• Model analysis (for example, does a model conform to a metamodel?) 
• Model checking or proof (for example, does a model satisfy certain properties?) 
• Test generation (verification) 
• Model management (extending configuration management) 
• Model transformation (to leverage other tools) 
• Model integration 

Tool integration through tool chains is a way to obtain greater lifecycle coverage. The remainder 
of this section discusses tool capabilities from the point of view of: 

• Design models – often focused more on design and code generation 
• Requirement models – provide ROI without requiring details to support code 

generation 
• Metamodels – used to support development of DSL and represent rules for 

source models 
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Design Model Perspective 
Design models ideally describe the behavioral specification used as the basis for code 
generation. Design models attempt to represents “what’s in the box,” and are graphical 
representations of the program, but often require formal text specifications too. They are the key 
ingredient needed for code generation or synthesis of hardware. 

As reflected in Table 1, there are different types of code generation tools that support both OO, 
and non-OO modeling tools. Some tools do not produce code for the entire application; 
therefore, the following is one way to classify4 the different code generating capabilities of the 
tools: 

• Structural (aka Elaborative): Generates code frames and stubs 

Some code generation tools are coding frameworks. The models produce some of the 
code for the target application, normally the structural aspects of the code, like the 
modules or classes. Often, these tools provide an integrated development environment 
where the code can be embedded within the tool (e.g., Rhapsody, Rose). Many of the 
tools aligning with the classification of the MDA initiative produce skeletons and stubs of 
the implementation but are not executable applications without the addition of behavioral 
code that is developed manually. 

• Translative: Generates code using translation templates 

Application-independent modeling gives users control over translating models into code. 
These modeling approaches often use graphics and languages formalism like the 
behavioral approach. The user often can tailor the translation capabilities. 

• Behavioral: Generates code using models and action specifications 

For example, the code generation formalizes the semantics of each model construct, as 
shown in Figure 13, including determining the dataflow, control flow, data types, 
functional hierarchies and calling structure. Simulink/Stateflow models represent 
structural (interfaces) and behavioral information formally, and supports control system 
and state machine modeling from a graphical set of modeling constructs (e.g., see 
Simulink Library Browser in Figure 13). They not only support code generation, but often 
support simulation of the models. 

                                                 
4 Bell, R. Code Generation from Object Models, http://www.embedded.com/98/9803fe3.htm, March 1998. 
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Figure 13. Behavioral Model Example 

Model analysis and automatic test generation can be applied to models that can fully describe 
structure and behavior. These capabilities provide additional ROI, because model defects can 
be identified early, and testing can be performed continuously during the development, 
evolution, and maintenance of the design. An example is provided in Session 4. 

Model Driven Architecture 

MDA is an approach supported by about 60 different tool and service companies that are 
affiliated with the OMG5. There are many variants to design-based tool support and MDA 
compliance is not required to get ROI from MDE. Figure 14 provides a perspective on the MDA 
concept with emphasis on the artifacts that must be created as inputs to leverage the tools, and 
those output that can be produced from the tools. The most fundamental aspects of the MDA 
concept start with the PIM and when combined with platform specific details such as a language 
choice, database, and middleware preferences there is one or more transformations to a PSM 
that could support code generation. Conceptually, this is similar to the process that occurs with 
Simulink models as is discussed in Session 4, but this is also similar to what has been done in 
the synthesis of hardware using hardware description languages such as Verilog Hardware 
Description Language (VHDL). MDA is simply a concept that is associated with OMG standards 
such as UML and OCL. Therefore, the focus is on the different types of modeling capabilities, 
not specifically named tools or standards.  

As discussed in Session 1, UML is a large and general standard, and platform independent 
models can be described in a language that is a subset of UML or related variants, and possibly 
a DSL. The key artifacts associated with MDE, shown in Figure 14, are discussed in the order in 
which they are often leveraged in the development process: 

                                                 
5 Companies providing MDA type products and service as of 2008; shttp://www.omg.org/mda/committed-
products.htm 
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1. Documentation is often an output of a modeling approach, and it should be leveraged to 
reduce the use of textual documentation. Documentation can be produced through some 
of the formal models that might be used to produce code, but other models that might be 
UML-based might not be precise enough to support formal model analysis, yet they 
provide structured information that is part of the documentation for the projects. 
However, using models for the sole purpose of automating document generation will 
probably not result in ROI. 

2. Traceability is often supported by most modeling tools; tools support linking model 
elements together, and this can provide the basis for traceability, which should ideally 
cover requirements through test. 

3. Code generation as discussed above in terms of the MDA concept involves the 
development of a PIM that can be defined based on model editors that support UML or 
other modeling notation such as a DSL. There are many possible platform-specific 
details such as a language choice, database, and middleware preferences that can be 
added based on the different tools and target platform. Although only one transformation 
is shown in Figure 14, there can be several transformations required to produce code or 
synthesize hardware. 

4. Simulation of a model is possible if the model represents behavioral details. Simulation 
can be valuable for validation of the system behavior with domain experts and 
customers of the system.  

5. Validation evidence related to checking models for certain properties (e.g., timing) is a 
broad subject with ongoing research as described in Session 4. Model validation 
includes identification of defects within the model, but a more basic set of validation 
evidence as reflected in Figure 14 includes the following scenario. A PIM metamodel 
defines the rules and constraints for a particular DSL, and model analysis tools that 
might use OCL can be used to verify that any specific model conforms to its metamodel. 
This concept is similar to the idea that a BNF grammar is used as the basis for 
specifying the syntax of a language (e.g., C++), and a compiler checks to see that the 
source code is syntactically consistent with respect to the BNF metamodel. Similarly 
checkers can provide assurance that a source model (e.g., PIM) conforms to that 
metamodel. However, model analysis capabilities usually cover other types of semantic 
analysis and provide model validation evidence as an output. A non-MDA model 
analysis example is provided in Session 4. 

6. Verification evidence ensures that the target implementation satisfies the models. This 
too often is done manually, but model-based test automation is evolving that can provide 
comprehensive verification evidence demonstrating model-based test coverage of the 
associated implementation. Automated support for testing can provide significant ROI 
after the initial release of a system, as model evolution and maintenance involves 
significantly more testing than development. Models for testing may include information 
from a PIM and PSM, as well as other test related details such as input ranges, test 
coverage criteria, and test sequencing criteria. An example is provided in Session 4. 

7. Configuration management, sometimes called model management, may not be thought 
of as an output of the modeling process, but it is a key element important to modeling 
tools. Configuration management of models can be significantly different than 
configuration management of code or documentation files, and therefore when planning 
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to select a tool for project use determine the tools that provide the best support for your 
organization. 

Inputs OutputsTools & Transformations

Model/
DSL

conforms to

Platform
details

Language,
Database,

Middleware, 
etc.

Application
Requirements

PSM

Transformation

Code Generation 3) Code

Other
Models

Doc. Generation

7) Configuration Management

Test
details

Model
Analysis

6) Verification 
Evidence

1) Documentation

2) TraceabilityPIM
Metamodel

Test
Automation

5) Model 
Validation
Evidence

PIM

4) Simulation
Results

 
Figure 14. Artifact Perspective Related to Generalization of MDA Concept 

Eclipse Open Source Platforms 

Some of the more established tools were developed before the Eclipse platform was created or 
emerged into a significant basis for tools. Currently, there are approximately 70 modeling 
projects, many which include integration from commercial packages into Eclipse. Just because 
a product is integrated into Eclipse, the tool is not necessarily free. There are different license 
strategies and users should make sure that if they plan to use or extend the products that they 
can comply with the licensing terms. However, for pilot project analysis, and to better 
understand tool technologies, Eclipse-based tools provide a substantial basis for getting started. 

The Eclipse Modeling Project, as reflected in Figure 15 integrates a number of different 
capabilities that are leveraged by open source and commercial tools. The framework evolved 
from OMG standards efforts and contributions by IBM, Borland and others, and it addresses 
needs of both the embedded system and enterprise communities. For example, see the next 
section on Structural/Elaborative Code Generation 
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Figure 15. Eclipse Modeling Project 

Structural/Elaborative Code Generation 

For users unfamiliar with the concept of structural or elaborative code generation there are free 
open source plugins such as Omondo that can be used to quickly understand the concepts of 
structural/elaborative code generation. By constructing a simple class diagram, the tools 
produce from an UML diagram and class associations the structural elements of Java code 
shown in Figure 16. The Address class in the UML diagram is directly associated with the Java 
code Address.java. Attributes and operations added to the UML class are reflected dynamically 
in the Java code. 



SSCI-2008002-MC Version  1.0 September 2008 

 28 of 53 

 
Figure 16. Class Diagram and Associated Java Code 

Eclipse Modeling Framework (EMF) 

The EMF project is a modeling framework and code generation facility for building tools. It 
represents information mostly related to class diagrams in UML, and was derived from 
OMG MOF. It is leveraged by many projects and modeling tools, for example it is the underlying 
foundation of the OpenEmbeDD platform as shown in Figure 17, which is an Eclipse-based 
"Model Driven Engineering" platform dedicated to Embedded and Real-Time systems (E/RT). 
The OpenEmbeDD project aims to offer engineers who design and develop E/RT software the 
means to express, simulate, validate and test the targeted system before any component 
implemented. For example, the Topcased tool kit supports: 

• Graphical editors for generic modeling tools (e.g., UML) 
• Graphical editors for modeling tools, dedicated to real-time and to embedded 

systems :  

- Structured Analysis Model (SAM) 
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- Architecture Analysis & Design Language (AADL)  

- SysML  
• Generation of graphical editor for models 
• Model transformations 
• Anomaly Management, Version Control, Requirements Traceability 
• Documentation generation 
• MARTE: OMG UML profile for Real Time systems; another domain specific 

language (DSL) – see Session 4 for more information. 

 
Figure 17. Open EmbeDD Platform 

Requirement Models 
Requirement models provide a different perspective on modeling that can provide significant 
ROI for the effort involved in producing the model. A requirement model describes the behavior 
in terms of the interfaces to a component or system. A requirement model describes “what the 
box should do” as opposed to a design model that describes “what is in the box.” People 
sometimes confuse requirement management such as that supported by tools like DOORS with 
requirement modeling. To clarify, tools such as DOORS, as shown in Figure 18, manage 
requirements using an outline form, much like a requirement specification document. It has 
capabilities to link and report on additional artifacts, but the information is not formalized like 
models, although DOORS could link to a formal model. Use cases based on a template (e.g., 
precondition, postcondition, main scenario, alternative course) add structure to requirements, 
but are not formalized as models. SysML supports a diagram for requirements, and it provides 
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greater requirement structure with visible traceability, as shown in Figure 18 but the information 
is still mostly text. 

DOORS® SysML

 
Figure 18. Requirement Management versus Modeling 

The Software Cost Reduction (SCR) Method6 created by Naval Research Laboratory formalized 
concepts for requirement modeling. Simply stated, behavior is formally defined in terms of: 

• System inputs, outputs, terms, and mode classes 
• Condition Tables - define values in terms of computations when associated 

conditions are met 
• Event Tables - define values in terms of computations upon occurrence of 

discrete events 
• Mode machines (classes) are simple state machines with: 
• Modes (states) and transitions 

There are a number of tools for SCR that support modeling, simulation, model analysis, model 
checking, proof, and verification (testing). There are significant resources that discuss SCR-
related tool and case studies conducted by SSCI members7. 

One SSCI member documented that significant benefits achieved through the use of 
Requirement Modeling8. Figure 19 provides a conceptual overview of the roles and flow of the 
artifacts that ultimately result in the target software. Figure 19 represents how the use of models 
was integrated into the existing project process. The adapted process included both the 
traditional process steps and roles (top of figure), and modeling extensions (bottom of figure) 

                                                 
6 Heninger, K., Specifying Software Requirements for Complex Systems: New Techniques and Their 
Application, IEEE Transactions on Software Engineering, Vol. SE6, No. 1, Jan, 1980. 
 
Heitmeyer, C., A. Bull, C. Gasarch and B. Labaw, SCR*: A Toolset for Specifying and Analyzing 
Requirements, Proceedings of the Tenth Annual Conference on Computer Assurance (COMPASS ‘95), 
June 1995. 
7 The Engineering of Model-Based Testing: Guidelines and Case Studies, SSCI-2005005-MC, Version 
01.00.25, July 2005. 
8 Part accepted to CrossTalk – date for publication not known at release of this whitepaper. 
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used to develop the application software. The system engineer develops textual requirements 
as well as any other type of analytical model that are captured in a Software Requirement 
Specification (SRS). The lead software architect identifies the components of the software 
architecture and works with the software requirements modelers to formalize the requirements 
and associated interfaces into models. The Software Requirements Modeler develops 
requirement models from the SRS and interface control document (ICD) using a modeling tool 
that supports the SCR method. Models capture behavioral requirements and interface 
information (e.g., inputs, outputs, types, ranges) extracted from an ICD. 

Traditional System/Software Development ProcessesTraditional System/Software Development Processes

Condition Tables

Event Tables

Mode Tables
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Event Tables

Mode TablesMonitored
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Variables

Controlled
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Modeling Extension

System/Requirements
Engineer
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SDD ICD

Software
Requirements 
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Code & Target Builds

SRS

Requirement 
Simulator

 
Figure 19. Process Roles and Flow 

The modeling process often identifies requirement or interface problems that must be resolved 
through interaction between the system engineer or software architect. For example, interface 
specifications were captured in a database that is shared by the project team, including 
subcontractors. The requirement modeling process and associated tools force the interface 
information to be complete and consistent. Additional problems or anomalies are identified by 
the system engineers through requirement simulation of the models. Validated requirement 
models are linked to the Software Design Document (SDD). The designers and implementers 
work directly from the SDD, requirement models, and interfaces to implement the code. These 
modeling-related extensions to the process help to improve the overall performance of the team. 
Better requirements and interface documentation allow software designers to focus on the 
detailed design and implementation of the code rather than chasing requirement issues or 
making assumptions that can result in costly rework. 

Figure 20 shows measurement data that provides a basis for discussing the benefits of using 
requirement modeling. Figure 20 compares data from the new (i.e., process with requirement 
modeling) against old (i.e., traditional text-based requirements process) using measurement 
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data that was captured in 100-day increments from the start of each respective program. The 
software system developed by both projects was very similar. The base measure that was 
common to both program, shown in Figure 20 is the total number of accumulated integration 
problem reports (IPRs). The number of IPRs for the new program was slightly higher than the 
old program through the first 400 days of the program. The number of IPRs for the old project 
increases significantly at about the 500th day of the program, and by the 800th day of the 
program the number of IPRs on the old program is about double the number of IPRs on the new 
program. The modeling activities helped find defects early and helped to minimize the defects 
later in the program even though both programs had ongoing releases associated with updated 
requirements over the multi-year program. 
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Figure 20. IPRs versus Day Into Program 

Another benefit of the models is that approximately 90% of the detailed software design 
descriptions rely on the requirement models. The requirement model is linked to the SDD rather 
than having the design specified in text. Models represent both high-level and low-level 
requirements (i.e., derived requirements). Unusual or complex designs are documented in the 
SDD using text, flow diagrams, or other engineering drawings as needed. This is another 
process efficiency gained through leveraging the requirement modeling process. The model 
provided a formal, precise statement of the requirements that could be referenced directly in the 
SDD. 

Metamodels 
The final perspective on models is the metamodel. A metamodel describes how modeling 
constructs can be used together. Metamodel tool support has resulted in more rapid creation of 
modeling tools. Some tools use UML as a metamodeling language and through a metamodel a 
DSL can be defined. As an example, Figure 21 reflects on the Generic Model Editor (GME) and 
associated tool suite developed by Vanderbilt. Metamodels allow rapid development of DSLs 
and associated modeling editors and tools. Microsoft provides a free DSL toolset that integrates 
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with the Visual Studio, and although the details of the Oslo Project9 have not been fully 
disclosed, it appears that Oslo will be a DSL or set of DSLs that allow models to be used to 
create various types of applications on Microsoft specific platforms. See Session 4 for additional 
details about how DSLs are used for many different types of languages. 

 
Figure 21. Generic Model Editor 

Session 4: What's Next to Come with MDE? 
Session 3 identified types of tools to cover design, requirement and metamodeling. The focus in 
the past has been on building models to support some type of hardware or software synthesis 
(e.g., code generation). It is difficult to predict the future, but there is a need for greater lifecycle 
coverage, and better model integration for systems, software and hardware. This session 
discusses model integration, which is needed to better support the complex interchange of 
information across multiple engineering disciplines. Domain-specific modeling approaches have 
and will promote the use of modeling in various domains, but model integration, and addressing 
system engineering integration concerns will be challenging. Tool automation is improving for 
models that represent structural and behavioral system aspects. Modeling approaches to 
support the system interactions such as timing, scheduling, and resource allocation is still 
needed, and this session briefly introduces some of the efforts to support concurrency and 
resource models that are being integrated with MDE approaches and tools. Model synthesis is 
only useful from models that are free of defects or can satisfy certain types of properties (e.g., 
timing, safety). Therefore, the session concludes by describing a few model analysis examples 
where MDE processes cover the entire lifecycle such that verification and validation (V&V) tools 
complete the development loop, supporting requirements management, and resulting in the 

                                                 
9 http://www.microsoft.com/soa/products/oslo.aspx 
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development cycle becoming a living dynamic process with stability and correctness properties 
of its own. 

This section takes a top-down view from high-level models to modeling tool technologies and  
briefly summarizes: 

• Model integration and challenges 
• Evolution of domain specific modeling language and associated standards 
• Specialized model notations and tools 
• Support for modeling concurrency 
• Model transformation 
• Model analysis, model checking and proof of properties 
• Model-based testing  
• Customer perspective on use of models, and the need for measures that can 

provide assurance from release-to-release that a system is working as modeled 

Model Integration Challenges 
SSCI members build complex systems that are often part of other complex systems of system 
such as the Future Combat System reflected by Figure 22. Many of the system elements are 
advanced and complex, but they must integrate with other systems that are equally advanced 
and evolving to address continually changing environmental situations. 

 
Figure 22. Future Combat System 
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Electrical and mechanical methods and tools for Computer-Aided Design (CAD) have been 
around for many years. Software modeling based on standards such as UML have advanced 
significantly in the past few years. There are standards supporting enterprise systems-of- 
systems such as DoDAF and MoDAF, and other standards associated with system engineering 
such as SysML and MARTE. Integration standards related to work by the OMG, INCOSE, and 
AP233, as well as Eclipse for open source development have resulted in many tools to cover 
various aspects related to modeling, simulation, code and document generation, and analysis. 
As reflected in Figure 23, any SSCI member organization that faces the challenges of 
developing these complex systems needs to improve the way they integrate the various 
disciplines, models, and tools. The ability to formalize information between groups would 
provide better assurance that the system will come together at integration time. In addition, 
model integration would support better dependency analysis related to new and changing 
requirements. This would allow SSCI member projects more information for cost and schedule 
impacts and estimation. There are significant integration challenges, and some related topics 
are described in this section.  
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Figure 23. Models, Standards, and Tool Example 

Enterprise and System Modeling Languages 
A brief introduction of some of the enterprise level and systems modeling languages and 
frameworks is provided with pointers to more information. DoDAF10 provides a set of views for 
organizing enterprise or systems architecture as reflected in Figure 24. MoDAF11 defines a way 
of representing an enterprise architecture which enables stakeholders to focus on specific areas 
of interests in the enterprise. MoDAF has been developed from DoDAF and keeps compatibility 
with core DoDAF viewpoints in order to facilitate exchange of architectural information as shown 
in Figure 25. Tools, for example MagicDraw provides a UML profile for DoDAF and SysML, 

                                                 
10 DoDAF http://www.defenselink.mil/dbt/Training/ACART/DoD_Architecture_Framework.htm 
11 MoDAF http://www.modaf.org.uk/ 
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allowing the model development to be integrated. The key challenge is integrating the modeling 
concept into the SSCI member organizations. 
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Figure 24. Department of Defense Architecture Framework Views Coverage 
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Figure 25. UK Ministry of Defence Architectural Framework 

SysML12 is a graphical modeling language in response to the UML for Systems Engineering 
RFP developed by the OMG, INCOSE, and AP233. SysML extends UML using diagrams that 
support structural and behavioral views, and has requirement and parametric diagrams as 
shown in Figure 26. SysML supports specification, analysis, design, verification and validation of 
systems that include hardware, software, data, personnel, procedures, and facilities. It supports 
model and data interchange via XML Metadata Interchange (XMI) and the evolving AP233 
standard. AP23313 is an ISO standard specifying communications pipeline between systems 
engineering tools and databases. The details of AP233 are important to model integration, but 
beyond the scope of the Webinar series and this paper. The OMG provides the latest 
information on SysML14. 

                                                 
12 SysML Overview and Tutorial – see http://www.omgsysml.org/INCOSE-2008-OMGSysML-Tutorial-
Final-reva.pdf 
13 AP233 - http://www.ap233.org/ 
14 SysML standard and documentation - http://www.omgsysml.org/ 
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Figure 26. Pillars of SysML 

Model Integration Steps 
Like any system, for example a house, it’s difficult to add one aspect of a home’s functionality 
such as plumbing, without considering the location of the electric wiring, switches and walls, and 
this is true in the integration of models. As summarized in Figure 27, Joseph Sifakis, a co-
winner of the 2007 Turning award stated that we need a holistic approach to integrate the 
essential domains, not simply extend hardware and software. This particular statement is based 
on embedded systems where there are significant integration challenges related to both 
software and hardware. Although the emphasis is on correctness-by-construction, in a world 
where hardware can fail simply by breaking, the demands on software that can support 
diagnosability, adaptivity in order to reconfigure the system to support some type of survivability 
demands more information about the system itself. These are models of the system resources 
and concurrency to address formal models of distributed processes that can support a 
reconfiguration effort. 



SSCI-2008002-MC Version  1.0 September 2008 

 39 of 53 

 
Figure 27. Embedded System Design Challenge 

Representation and Tailoring of Models for Domain-Specific Uses 
Modeling and Analysis of Real Time and Embedded System15 (MARTE) is the first attempt at 
UML for real-time engineers like SysML was the first attempt at UML for system engineers. It 
addresses key elements to support real-time system details such as time, resources and 
scheduling. MARTE is attempting to support models for time that consider the concept that 
system time is not equivalent to physical time (e.g., two systems could have clocks that are not 
synchronized). MARTE also defines concepts for software and hardware resources as reflected 
in the example shown in Figure 28. There is significant work to do to provide better tool 
integration support and there is participation by most of the major commercial tool and service 
companies. In addition there are open source tools that are available through OpenEmbeDD 
platform discussed in Session 3 and represented in Figure 17. 

                                                 
15 See http://www.omgmarte.org/Specification.htm for more details and presentation at this site identify 
tool vendor involvement. 
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Figure 28. MARTE Resource Specification of Non Functional Property 

Model Representations for Concurrency 
The concept of concurrency is required to support distributed and parallel systems which are 
much more prevalent today. Developing the control for distributed systems has been the topic of 
research for many years. To align with the needs reflected by Sifakis’ challenge shown in Figure 
27 the only way to obtain highly dependable16 systems is to develop it to be complete and 
correct or to be adaptable in the face of failure. Considering that hardware can break, especially 
when exposed to hostile environments such as the Future Combat System, it is essential to 
develop approaches for adaptability and reconfigurability. However, adaptation involves 
concurrency in that one or more processes must be able to monitor the system for failures and 
be able to modify the system processes to reconfigure and continue with some aspects of the 
overall system functionality. 

Professor Edward Lee (UC Berkeley) has been working on models of concurrency for many 
years, and his work on the Ptolemy II project studies modeling, simulation, and design of 
concurrent, real-time and embedded systems. Lee points out that there are some potential flaws 
in the concept of threads17, which are often used to support concurrency. Not all threads are 
problematic, but because threads can share memory there can be undesirable consequences 
such as deadlock. The Ptolemy II project focuses on assembly of concurrent components. The 

                                                 
16 Dependability is a collective term subsuming the notions of reliability, availability, safety, confidentiality, 
integrity, maintainability, and security [Laprie 1984]. 
17 The Problem with Threads, http://www.eecs.berkeley.edu/Pubs/TechRpts/2006/EECS-2006-1.html.  
See http://www.researchchannel.org/prog/displayevent.aspx?rID=9488&fID=2501. 
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underlying principle is to use well-defined models of computation that govern the interactions 
between components, and attempting to deal with the use of heterogeneous mixtures of models 
of computation. Ptolemy II includes modeling tools that focus on the concurrency aspects of a 
system. These tools are available for download, and there are efforts underway to integrate 
these tools with other tools to continue to extend tool chains to address concurrency issues.  

As standards evolve, such as MARTE, tools continue to evolve too. For example, there are 
other tools that are part of OpenEmbeDD that provide time-oriented model analysis. Two 
examples include: 

• CCSL is Clock Constraint Specification Language provides visual tree of parsed 
model clocks 

• Polychrony environment based on synchronous multi-clocked model of 
computation with model checker 

Model Checking 

Model checkers can also support time-based analysis. Model checking is the process of 
checking whether a given structure is a model of a given logical formula. Model checkers can 
check to determine if a model satisfies certain properties (e.g., timing constraints). For example, 
finding errors such as data-races, deadlocks, livelocks in multithreaded software by exploration 
of a thread. The concept is general and applies to all kinds of logic, although it has been used 
more for hardware than software. SPIN is a well-known general tool for verifying the correctness 
of distributed software, but there are many other examples too. As discussed in the next 
section, model transformation is often required to pull different model views together to leverage 
tool chains. 

Model Transformation 
This section discusses other tools that may need or perform model transformations. The 
challenge with tool chains is that often one tool does not use or produce all the needed 
information for upstream, or downstream tools. The concept of transformation is not new, 
although other words may have been used to describe a tool’s function in the past such as 
compilation or translation. Traditionally, the tools provided a text-to-text transformation. For 
example machine code from assembly to higher language forms such as Fortran, C, Java, 
including domain specific language SQL, and Prolog have been ongoing for many years. More 
general forms such as Extensible Stylesheet Language Family (XSL) Transformation (XSLT) 
transform XML documents into other XML documents.  

Tools now support model-to-model, model-to-text, or text-to-model transformations. Model 
transformations are needed because information is not necessarily in one model. 
Representations that are suitable for simulation or code generation are often not directly usable 
to support analysis or verification. For example, consider the UML example shown in Figure 29. 
If the goal is to produce code, then there is a need for structural information and behavior. UML 
class diagrams provide structural information that maps directly to code as shown in the 
example in Figure 16, but this is not sufficient for code generation. UML behavior can be 
provided in state machines, sequence diagrams, activity diagrams or action specification such 
as that provide in xUML. Each of these individual aspects of behavior might not be sufficient for 
code generation. For example, state machines be associated with a class diagram to specify the 
lifecycle of an object, but that does not necessarily describe the application which requires a 
sequence diagram to specify the interactions between objects. 
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Figure 29. Models Transformation Required for Transforming Different Representations 

The OMG standard QVT (Query/View/Transformation) is another MDA-related standard. From a 
simplistic point of view the concept of model transformation involves converting a model A 
conforming to metamodel A into a model B conforming to metamodel B as shown in Figure 30. 
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Figure 30. Simply View of Model Transformation Concept 

Currently tools exist that are compliant with the OMG standard including the following non-
exhaustive list: 

• Borland Together is a component in the M2M Eclipse project 
• SmartQVT an Eclipse open source implementation of the QVT-Operational 

language 
• Eclipse M2M open source implementation of QVT operational 

There are other transformation approaches that are not compliant with the OMG standard, for 
example the ATLAS Transformation Language (ATL)18 was inspired by the OMG QVT standard 
and builds upon the OCL formalism. It is a hybrid language providing a mix of declarative and 
imperative constructs, and available as part of the OpenEmbeDD toolset making it easily 
available for experimentation and evaluation. openArchitectureWare provides yet another open 
source for transformation tools, and there are video examples at www.openarchitectureware.org 
that demonstrate the use of model transformation. 

                                                 
18 http://www.eclipse.org/m2m/atl/ 
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Proof of Properties 
Significant focus has been placed on code generation, but model analysis is important to ensure 
that models meet certain criteria before being used for code generation. If the model has 
defects, then the correctness of the generated code is likely to be incorrect too. Model analysis 
can identify defects in a model such as inconsistent constraints or behavioral conditions, and 
violation of timing or safety properties. 

There are different approaches used to support model analysis. Model checking was briefly 
mentioned above, but theorem provers provide another approach to support model analysis. 
One of the most basic types of proof involves proof by contradiction. The programming 
language Prolog uses this basic mechanism to support computation. For model analysis the 
idea is simple: 

Assert something is NOT true, then if a solution is found that violates the proof, it 
identifies a problem in model 

This mechanism can be used for checking that a model satisfies safety properties too, for 
example, consider the safety property: 

The aircraft radar should not be enabled when there is weight on wheels 

If this particular situation is permitted within the model, then this violates the safety property, 
because the model analysis has detected certain input conditions that would potentially allow a 
person on the ground near the aircraft to be “radiated” while the aircraft has weight on wheels 
(i.e., is on the ground). Using a proof mechanism, an assertion can be made stating that radar is 
enabled and weight on wheels is true. A theorem prover would determine if there are any paths 
through the model that permit this situation, and if so, it would show those paths to the user 
performing the analysis, leading hopefully to a correction of the model. 

A similar approach can be used to identify unreachable paths through the system. The basic 
process applies the general question:  

Can a function or path within a model be reached? Or, are there paths to functions that 
cannot be reached? 

This type of check can be automated, although model transformations are generally required to 
transform the model into a form that can be processed by theorem provers. Consider the simple 
example shown in Figure 31. Assume that there are three variable:  

x: Integer with domain from 0 to 10 
y: Integer with domain from 0 to 10 
z: Integer with domain from 0 to 10 

If there is a requirement that specifies:  

z = 0 when 
      x < 3 AND  
      y < 4 AND  
      x + y > 7  
 
then  
   maximum value for x is 2  
   maximum value for y is 3 
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   minimum value for x + y is 8 
 

The region represented by the intersection of x & y does not overlap the constrained region 
defined by x + y > 7. The constraint expression is contradictory and cannot be satisfied, 
because the variable z will never be assigned a value of 0 through this requirement. Thus, the 
model has a defect. Real-world problems typically include complex constraints that span many 
modules or components of an application. In these situations it can be difficult to isolate these 
types of errors through manual processes. Automated model analysis provides a tool for 
locating these errors. The Session 4 Webinar slides provide a detailed set of slides that 
summarize a similar situation that is briefly explained below. 

x

(10,10)

(0,0)

y

x + y > 7x + y > 7

Constraint Key

x < 3x < 3

y < 4y < 4

x & y intersectionx & y intersection

 
Figure 31. Inconsistent Constraints 

The Simulink model shown in Figure 32 has a seeded defect to illustrate the model defect 
identification and tool chain traceability links from a model report to the model. The example 
includes four related Simulink subsystems. The highest-level subsystem, 
hierarchical_root references child_yz, and parent_xy, each with two threads. 
Parent_xy references child_xy, which also has two threads. As shown in Figure 32, the 
defect exists because there is no combination of threads through the lower-level subsystems 
that permit both x and z to be greater than zero when the output (i.e., assignment) of 
hierarchical_root must be TRUE. The model child_2_xy requires y <= 0 when x > 0, 
but child_2_yz requires y > 0 when z > 0. Thus, a contradiction exists between the logic of 
hierarchical_root and logic across two dependent subsystems.  
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Figure 32. Model Defect Simulink Example 

A model transformation from Simulink into T-VEC Vector Generation System (VGS) is 
performed to expand the model threads shown graphically in Simulink into analyzable paths as 
shown in Figure 33. VGS is general purpose tool supporting model analysis and test generation. 
There are three different, but related model transformation mechanisms that can convert 
graphical or textual models characterizing requirement, design and application properties (e.g., 
safety), based on representations such as decision tables, state machines, control system, and 
code, into a hierarchical form that mirrors the representation of the Simulink subsystems. The 
underlying modeling language provides support for an extensive set of mathematical operators 
(e.g., trigonometric, intrinsic, integrators, quantization, matrix) that extend standard arithmetic 
operators to specify functional behavior supporting various applications domains. Other VGS 
components include the test vector generator that integrates with a test driver generator to 
produce test drivers that automate test execution for most any language and test environment 
with automated test results analysis. 
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Figure 33. Simulink to T-VEC VGS Model Transformation of Structure and Behavior 

The traceability links from the VGS status and error reports link to the likely source of the model 
error as shown in Figure 32. The status report provides a summary for each subsystem, 
including the number of Domain Convergence Paths (DCSs) derived during the model 
transformation process. The summary report provides the number of test vectors, and the 
number of model coverage errors. Hyperlinks from the project status report link to other reports 
including the model defect error report that is produced for each DCP that has a defect. A 
hyperlink from the model error reports traces back to the Simulink model construct that is the 
likely source of the problem.  
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Failure Analysis
All inputs to AND gate must be 
TRUE
• Requires x > 0, z > 0
• Requires h_child_2_xy and 

h_child_2_yz be TRUE, 
which requires y <= 0

• Resulting in contradiction between
top level system logic and logic
across 2 subsystems

 
Figure 34. Model Coverage Results and Traceability Links 

The model analysis capability also supports proof of properties (e.g., safety). Model assertions 
representing safety properties can be specified external to the model, and during the test 
generation process, if test vectors are generated from a safety property assertion that is 
associated with a model, the test vector identifies a DCP thread through the model, where the 
safety property is violated. 

Other checks such as mathematical errors or potential errors (e.g. division by a domain that 
spans zero) are flagged as being a potential divide-by-zero hazard, or range overflow or 
underflow, where variables of the model have values outside the specified bounds of the type of 
that variable. The error reports generated for these errors link back to the model source. 

Model-Based Testing 
The process efficiencies derived from fully automated model-based testing can provide 
significant cost reductions especially as programs move from initial development and 
deployment to evolution and maintenance, however there are significant challenges due 
primarily to the completeness of the models and the ability to support model transformations 
that can leverage tool chains to support the test automation. Some of the key limitations result 
from: 

• Lack of formalized behavior, which was pointed out as an issue for code 
generation too, for example – even if a state machine is provided for each class, 
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the constraint and actions associated with each state transition must be formally 
defined 

• Lack of formalized mapping between the model variables and implementation 
variables to support automated test execution and results analysis 

• Determining test inputs sets that can cover the threads of a model – often the 
complexity of the constraints can make the determination of inputs value difficult 
to determine 

• Determination of the expected output 

As shown in Figure 33, VGS provides automated test vector generation (i.e., inputs and 
expected outputs) and test driver generation to automate test execution and results analysis. It 
does this as a side-effect of performing the model analysis. Once VGS proves that a set of 
constraints from the model is satisfiable, test values for the inputs are selected from the 
boundary values, which are often most effective at finding potential faults in manually produced 
or automatically generated code. The expected outputs are computed internally to VGS based 
on the computation derived from the model transformation using the input values selected for 
test cases. 

Model and Modeling Tool Evolution 
The pace of advancement of modeling tools has increased over the past few years. Standards 
have helped establish a basis for modeling products, and open source efforts such as the 
Eclipse Modeling Project have provided a quickly evolving infrastructure for research and 
development of tool chains, while providing greater availability for evaluation, experimentation, 
and extension. However, users of the tools must know how different tool versions can impact 
evolving systems that SSCI members produce. Members must know that the system is 
operating correctly when new modeling types and tools are used. Modeling tools and the 
associated tool chains are more complex than the compilers that are used to produce code. 
SSCI customers are interested in the same question and will be demanding more information as 
they perform oversight of projects. 

For example, consider Figure 35 that was taken from an SSCI training course that is being 
given to a NASA organization that is overseeing model-based tool usage on their programs. The 
NASA organizations do not necessarily develop models, but they want to have the assurance 
that the resulting system operates correctly. This involves several different points of view that 
are shown using the model analysis results shown in Figure 34. The oversight process, which 
could be used by a quality assurance organization too, is reflected in the flow chart in Figure 35: 

1. Models should be free of defects 

2. Generated tests should be executed against code that is instrumented to ensure that all 
paths through the code have been tested. Tools such as LDRA Testbed are used by 
SSCI members to support this function. 

3. All test cases should pass (i.e., actual outputs should match expected outputs within 
numerical tolerances) 

4. All test cases should be executed against un-instrumented code to ensure that 
instrumentation had no impact on the test execution results. This is the code that will be 
deployed in the target system. 
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5. Code defects should be analyzed to determine if the code or model was incorrect 
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Figure 35. Model-Based Measures 

Part of the model-based adoption process requires additional effort to follow a few additional 
guidelines related to the use of modeling tools that are evolving much more quickly than 
traditional compilers. An approach similar to the oversight role described above could leverage 
model-based test automation in making sure that model evolution and new tool usage is 
predictable and dependable. Minimally projects should put processes in place to: 

• Create baseline models for re-validating tool functionality from release-to-release 

- Testing could be used to identify unexpected changes in the model 

- Performing automated differencing of the generated artifacts is also a possibility 
• Update and maintain the baseline models with each new tool version 
• Version control tools to ensure deliverables are reproducible from source artifacts 

maintained under configuration control 

Conclusion 
This paper and associated Webinar series has identified the types of models that can be used 
to support lifecycle activities so that members can better understand what they should invest in 
to achieve the immediate cost saving or long-term benefits. The focus attempts to identify and 
provide realistic expectation on the information that can be derived from models and associated 
modeling tools that can contribute to the lifecycle activities including development, verification, 
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evolution, maintenance and management of the software systems that are critical to SSCI 
members. 

SSCI member organization should determine model-based technology objectives by using pilot 
project to assess technology and method alignment for their organization and programs. They 
should use a modeling maturity model concept to consider both ROI and key practices changes 
while making technology adoption decisions. As shown in Table 2, ROI is not necessarily the 
only factor for considering MDE adoption, because structuring of developmental practices 
provides longer-term benefits that can lead to formalizing organizational knowledge. 

Table 2. Model Adoption Benefits and Tradeoffs 

Levels Goals/Approach Benefits Comments
1 Models not used. The risk is too high.

2 Opportunistic use of models.

Increased awareness of modeling practices 
and terminology, potentially beneficial in 
future programs.

ROI should not be expected, but there is 
potential for increasing maturity of 
organization. Need to understand phase-in 
to legacy program, or adopt only on new 
programs.

3

Models used for guiding 
implementation and production of 
documentation. Code frameworks may 
be generated, but detailed logic 
created by hand.

Potential reduction in cost of documentation; 
training of people and acquisition and 
mangement of tools, and understanding 
modeling.

Expected ROI should be minimal, but 
process viewed as stepping stone for 
organization. Focus on modeling 
standards, model and project organization, 
model integration, and CM.

4

Separation of business, domain-
specific models from platform-specific 
models, and models used to produce 
the target systems.

Organization domain knowledge in models is 
established, with standarized ways of 
managing and measuring projects. 
Separation of domain models from platform 
details, and significant software development 
done automatically through models.

The spectrum for level four could be large 
based on the type of system and potential 
targets.

5

Domain-specific and business models 
separated from platform; all models 
transformed to executable systems.

All intellectual knowledge and properties of 
the organization captured, reused and 
extended.  

 
Pilot project are the time when organizations should establish process guidelines, methods and 
standards, some of which are summarized in Session 2 of this paper, as well as take into 
consideration proposal impacts, cost, schedule, and training. 

Many modeling tools are evolving to address evolving modeling standards, but there are 
significant model integration challenges. Organization should understand how different tools can 
cover the lifecycle and ensure that the specific tools align with the processes and capabilities of 
the organization. 

Terms and Acronyms 
This section provides a list of some of the terms used throughout the paper. 

AADL Architecture Analysis & Design Language 

AP233  Application Protocol 233 

ATL ATLAS Transformation Language 

BNF Backus Naur Form 
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BPML Business Process Modeling Language 

CAD Computer-Aided Design 

CASE Computer-Aided Software Engineering 

CDR Critical Design Review 

CMM Capability Maturity Model 

CMMI Capability Maturity Model Integration 

CORBA Common Object Requesting Broker Architecture 

CWM Common Warehouse Metamodel 

DBMS Database Management System 

DCP Domain Convergence Path 

DoDAF Depart of Defense Architectural Framework 

DSL Domain Specific Languages 

EJB Enterprise JavaBeans 

Erwin Data modeling tool produced by Computer Associates 

IBM International Business Machines 

ICD Interface Control Document 

INCOSE International Council on Systems Engineering 

IPR Integration Problem Report 

IT Information Technology 

Linux An operating system created by Linus Torvalds 

MARTE Modeling and Analysis of Real Time Embedded systems 

MATRIXx Product family for model-based control system design produced by 
National Instruments 

MBT Model Based Testing 

MDA® Model Driven Architecture® 

MDD™ Model Driven Development 

MDE Model Driven Engineering 

MDSD Model Driven Software Development 

MDSE Model Driven Software Engineering 

MIC Model Integrated Computing 

MMM Modeling Maturity Model 

MoDAF United Kingdom Ministry of Defence Architectural Framework 

MOF Meta Object Facility 

MVS Multiple Virtual Storage 

NASA National Aeronautics and Space Administration 
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OCL Object Constraint Language 

OMG Object Management Group 

OO Object oriented 

PDR Preliminary Design Review 

PIM  Platform Independent Model 

PSM Platform Specific Model 

RFP Request for Proposal 

ROI Return On Investment 

SSCI Systems and Software Consortium 

Simulink/Stateflow Product family for model-based control system produced by The 
Mathworks 

SCR Software Cost Reduction 

SDD Software Design Document 

SOAP A protocol for exchanging XML-based messages – originally stood for 
Simple Object Access Protocol 

Software Factory Term used by Microsoft 

SRS Software Requirement Specification 

SysML System Modeling Language 

UML Unified Modeling Language  

XMI XML Metadata Interchange 

XML eXtensible Markup Language 

XSLT eXtensible Stylesheet Language family (XSL) Transformation 

xUML Executable UML 

Unix An operating system with trademark held by the Open Group 

VHDL Verilog Hardware Description Language  

VGS T-VEC Vector Generation System 

VxWorks Operating system designed for embedded systems and owned by 
WindRiver 
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About the Systems and Software Consortium, Inc. 
The Systems and Software Consortium, Inc. (SSCI) is a nonprofit partnership of market leaders, 
government agencies, and academic affiliates. As a consortium, SSCI enables industry and 
government to co-invest in the development of systems and software processes and capabilities 
that improve business performance. Members also have access to a team of technical experts 
whose collective knowledge of best practices and lessons learned gives SSCI the unique 
opportunity to offer practical advice and proven solutions.  

 

 
 

 

The Consortium is interested in your comments and 
suggestions.  Please send your thoughts and insights to 

ask-ssci@systemsandsoftware.org. 

For more information about the Systems and Software 
Consortium, please visit  

www.systemsandsoftware.org  


