

Copyright © 2008, Systems and Software Consortium, Inc. All rights reserved. This document is proprietary property of the Systems
and Software Consortium, Inc. The contents of this document shall be kept confidential pursuant to the terms of the Membership
Rules, as amended from time to time, of the Systems and Software Consortium, Inc. This document shall only be disseminated in
accordance with the terms and conditions of those Rules. All complete or partial copies of this document must contain a copy of this
statement.

What’s Model Driven Engineering
(MDE) and How Can it Impact

Process, People, Tools and
Productivity

 Mark R. Blackburn, Ph.D.

Systems and Software Consortium, Inc.

Abstract Contents

This paper is associated with a four-part Webinar Series
presented in 2008 that discusses Model Driven Engineering
related topics that are now relevant to System and Software
Consortium (SSCI) members. Some SSCI members were
early adopters of Model-Based approaches, and SSCI has
expertise and lessons learned from working with these early
adopters dating back to 1995. Customers are now asking
SSCI members to use MDE approaches and tools. However,
for some SSCI members there is a large knowledge gap and
they don’t know how best to adopt MDE or even get started.
There are concerns related to modeling techniques,
organizational process changes, tools, and project estimation
and cost. In addition, there are good and bad ways to
integrate model-developed components with those developed
using other more traditional approaches.

A key objective of this paper and Webinar series is to clarify
what types of models can be used to support lifecycle
activities, so that members can better understand where they
need to invest to achieve immediate cost saving or long-term
benefits. Therefore, the focus of MDE from the perspective of
this paper is what information can be derived from model and
associated modeling tools that contributes to the
development, verification, evolution, maintenance and
management of the software systems that our members
develop.

What Do You Think?.................. 2

Introduction 3

Session 1: What's MDE and Why
Should I Care? 5

Session 2: How Does MDE
Impact My Process? 13

Session 3: What's Happening
with MDE Tools?...................... 21

Session 4: What's Next to Come
with MDE?................................ 33

Conclusion 49

Terms and Acronyms............... 50

About the Systems and Software
Consortium, Inc........................ 53

SSCI-2008002-MC Version 1.0 September 2008

 2 of 53

This paper, like the Webinar series, is a trial. The paper describes information presented at
the Webinar series sessions. During the Webinar, tools were mentioned, but these are
provided as examples. The Consortium is not recommending any particular tool or technology,
but rather seeks to make members aware of the capabilities of different tools. 1

What Do You Think?
The author is interested in any comments you have regarding the use of the Webinar Series
and coverage of Model Driven Engineering, especially concerning the following topics:

• Was the Webinar Series a useful mechanism to disseminate information or do
you prefer other means such as classroom training?

• The organization of this whitepaper is aligned with the Webinar Sessions – do
you have any other recommendations that would improve the delivery of this
information?

• What other Model Driven Engineering topics would you like covered in a future
Webinar, paper, or other delivery mechanism?

Please send your response to these questions and any other comments to ask-
ssci@systemsandsoftware.org, referencing the title of this paper in the subject line.

1
BridgePoint is a registered trademark of Mentor Graphics.
IBM™ is a trademark of the IBM Corporation
Capability Maturity Model®, CMM®, and CMMI® are registered in the U.S. Patent and Trademark Office by Carnegie Mellon
University
Java™ and J2EE™ are trademark of SUN Microsystems
Java is trademarked by Sun Microsystems, Inc.
Linux is a registered trademark of Linux Mark Institute.
Mathworks, Simulink, and Stateflow are registered trademarks of The Mathworks, Inc.
MagicDraw is a trademark of No Magic, Inc.
MATRIXx is a registered trademark of National Instruments.
MVS is a trademark of IBM.
Object Management Group (OMG) : OMG's Registered Trademarks include: MDA®, Model Driven Architecture®, UML® ,
CORBA®, CORBA Academy®, XMI®
OMG's Trademarks include, CWM™ , Model Based Application Development™, MDD™, Model Based Development™, Model
Based Management™, Model Based Programming™, Model Driven Application Development™, Model Driven Development™
Model Driven Programming™, Model Driven Systems™, OMG Interface Definition Language (IDL)™, Unified Modeling
Language™, <<UML>>™
OMG®, MDA®, UML®, MOF®, XMI®, SysML™, BPML™ are registered trademarks or trademarks of the Object Management
Group.
PowerPoint is a registered trademark of Microsoft, Inc.
Real-time Studio Professional is a registered trademark of ARTiSAN Software Tools, Inc.
Rhapsody is a registered trademark of Telelogic/IBM.
Rose XDE is a registered trademark of IBM.
SCADE is copyrighted to Esterel Technologies.
Simulink is a registered trademark of The MathWorks.
Stateflow is a registered trademark of The MathWorks.
Statemate is a registered trademark of Telelogic/IBM.
TAU/Developer is registered to Telelogic/IBM.
T-VEC is a registered trademark of T-VEC Technologies, Inc.
UNIX is a registered trademark of The Open Group.
VAPS is registered at eNGENUITY Technologies.
Visio is a registered trademark of Microsoft, Inc.
VxWorks is a registered trademark of Wind River Systems, Inc.
Windows is a registered trademark of Microsoft Corporation in the United States and other countries.
XML™ is a trademark of W3C
All other trademarks belong to their respective organizations.

SSCI-2008002-MC Version 1.0 September 2008

 3 of 53

"Over time, code gets complicated, and you want to be agile and
change it," he said. "This (modeling) is definitely an area that's
open for improvement." – Bill Gates Final Keynote

June 3rd 2008
http://www.informationweek.com/news/software/development/sho
wArticle.jhtml?articleID=208401781

Microsoft may not have been considered a major player in modeling for many years, at least
what might be considered the formative years of modeling, but Gates in his final keynote
address talked about how modeling will transform software development for Microsoft
customers, especially in how the software development lifecycle is managed.

Introduction
Some System and Software Consortium (SSCI) members were early adopters of model-based
approaches, and SSCI has expertise and lessons learned from working with these early
adopters dating back to 1995. Customers are now asking SSCI members to use Model Driven
Engineering (MDE) approaches and tools. However, for some SSCI members there is a large
knowledge gap and they don’t know how best to adopt MDE or even get started. There are
concerns related to modeling standards, modeling techniques, organizational process changes,
modeling tools, and project estimation and cost. In addition, there are good and bad ways to
integrate model-developed components with those developed using other more traditional
approaches.

The evolution of modeling standards2 that cover enterprise (e.g., DoDAF, MoDAF), systems
(e.g., SysML, MARTE), software (e.g., UML) and hardware provides a common basis for the
development of interoperable modeling tools. Tool integration standards related to work by the
OMG, INCOSE, and AP233, as well as Eclipse for open source development have resulted in
many tools to cover various aspects related to modeling, simulation, code and document
generation, and analysis. However, model and tool integration is still challenging, and member
companies want to understand more about the specifics of modeling tools and applicability to
specific domains and types of system (e.g., embedded versus IT/enterprise).

Even with the influence and availability of model-based tools within the university systems
where new graduates have the modeling skills, domain knowledge and process guidelines are
required for developing complex systems. Open source and commercially available tools are
maturing, but MDE may not be right for all projects. For SSCI Member organizations, to
minimize program risk, it is important for new MDE users to understand tool limitations and
issues, but it is even more important to determine how specific tools and modeling approaches
can be aligned with existing processes and the skills of people.

2 See Session 4 for more information on Department of Defense Architectural Framework (DoDAF), UK
Ministry of Defence Architectural Framework (MoDAF), System Modeling Language (SysML), Modeling
and Analysis of Real Time and Embedded Systems (MARTE), and Unified Modeling Language (UML).

SSCI-2008002-MC Version 1.0 September 2008

 4 of 53

Finally, some members have stated that their modeling efforts have not provided the significant
results that they have expected. Too often the selected modeling approach has resulted in
models that were barely more than cartoons, often related to models that represent only
structural system aspects. Models must minimally represent structural and behavioral system
aspects in order to automate code generation, but modeling approaches to support the system
interactions such as timing, scheduling, and resource allocation are being integrated with MDE
approaches and tools. Ongoing research is providing insight into complex problems such as
parallel computing and concurrency. The results will lead to improved model-based code
generation and model analysis required to provide greater assurance of the dependability of
today’s complex distributed systems.

MDE Webinar Series and Organization of Paper
This paper provides supporting documentation for the four-part Webinar series. Figure 1
provides a perspective on the Webinar sessions content. Session 1 provided an overview of
how modeling types, process from a return on investment (ROI) and tool technology are related.
In addition, session 1 introduced modeling concepts, terminology, approaches, process and
organization implications, benefits, limitations, risks, and the state of the tools. Session 2 used a
modeling maturity model to discuss ROI and key practices, including modeling guidelines and
recommendations useful for project proposals and model adoption. Session 3 described tool
capabilities, and the importance of tool integration that is needed to achieve full lifecycle
support. Session 4 included more advanced topics such model integration and challenges from
various engineering domains (e.g., software, hardware, mechanical, etc.) up through the system
and system-of-system (enterprise) levels, while making some predictions on where MDE is
going in the future.

Doc. Generation

Models
Structure/Interfaces

Behavior (functions)

Concurrency

Resources/Environment

Models
Structure/Interfaces

Behavior (functions)

Concurrency

Resources/Environment

Structure/Interfaces

Behavior (functions)

Concurrency

Resources/Environment

Focus of
Discussion

in
Webinar
Series

Level 5:
Models Only

Level 4:
Precise Models

Level 3:
Models with Text

Level 2:
Text with Models

Level 1:
Text Specification

Focus of
Discussion

in
Webinar
Series

Level 5:
Models Only

Level 4:
Precise Models

Level 3:
Models with Text

Level 2:
Text with Models

Level 1:
Text Specification

Level 5:
Models Only

Level 4:
Precise Models

Level 3:
Models with Text

Level 2:
Text with Models

Level 1:
Text Specification

1. Model Types
(Abstractions)

2. Process Perspectives
(ROI versus Practices)

3. Model Tooling Technologies
(Automation)

Code Generation

Simulation

Transformation

Management

Model Analysis

Verification

Domain
Specialization

4. Life Cycle Coverage
(Evolution)

Figure 1. Perspective on Model Driven Engineering Presentation

SSCI-2008002-MC Version 1.0 September 2008

 5 of 53

The webinar sessions topics were:

• Session 1: What's MDE and Why Should I Care?
• Session 2: How Does MDE Impact My Process?
• Session 3: What's Happening with MDE Tools?
• Session 4: What's Next to Come with MDE?

The paper presents the webinar material roughly in the same order as the information was
presented in the Webinar sessions. Many of the key topics presented in Session 1 are further
explained in greater detail in one or more of the other sessions. The presentations and podcasts
from the Webinar can be obtained from the Members Only section of the SSCI website
www.systemsandsoftware.org under Training, Event Archive, and Webinars menu.

Who Should Read This Document?
This paper, especially Sessions 1 & 2, is applicable to most of the SSCI member personnel
involved in software system engineering including:

• Directors and managers
• Capture managers & teams
• Program and project leads
• System and software engineers: architects, developers, integration and test
• Process developers
• Customers

Sessions 3 & 4 provide more technical information related to lifecycle coverage, evolving
standards, and leading-edge tools. These sessions should provide all readers a high-level
perspective on tools and technology, but the final few subsection will probably be more
beneficial to technologists.

Session 1: What's MDE and Why Should I Care?
This session provides a broad overview of areas related to MDE and provides high-level
information and key technical details needed to understand the difference between models,
modeling, and model driven engineering.

What’s Modeling About?
One key aspect of models and modeling is abstraction, which supports communication through
different views with various levels of details. Details of importance can be emphasized while
other details are not described. For example, a mobile of the solar system as shown in Figure 2

SSCI-2008002-MC Version 1.0 September 2008

 6 of 53

shows the number of planets and might show the relative position of the planets, but it does not
accurately show the plant’s size or distance from sun. Figure 3 provides a different perspective
on the planets of the solar system and emphasizes the relative size of the planets. To get an
accurate perspective of a problem or solution often requires several views with some type of
formal description of the relationship between the views. For example, the distance from the sun
to each planet needs to be described using consistent units (e.g., miles).

Figure 2. Mobile

Figure 3. Relative Size of Planets

What’s Model Driven Engineering About?

SSCI-2008002-MC Version 1.0 September 2008

 7 of 53

MDE is about the use of relevant abstractions that help
people focus on key details of a complex problem or solution
combined with automation to support the analysis of both the
problem and solution, along with the mechanism for combining
the information collected from the various abstractions to
construct a system correctly. Some of the key abstractions can
be categorized into types, such as:

• Structure – systems, subsystems, components,
modules, classes, and interfaces (inputs and outputs)

• Behavior (functionality)
• Timing (concurrency, interaction)
• Resources (environment)
• Metamodels (models about models)

Some of these abstraction concepts have existed and evolved with programming languages, but
within a programming language the combination of these views may be lumped or tangled
together (e.g., spaghetti code). Details such as the protocols for communicating, concurrency
concepts such as threads, and specialized interfaces to hardware might be combined with
domain-specific functional details such as financial computations for tax processing, control law
processing for aircraft, or weapon delivery rules. Through good development practices
programs can be better structured and layered, but models provide a means of systematically
separating these views, because certain types of models are constrained to permit only certain
types of information. MDE automation relies on automated means for analyzing the views,
deriving information from one-or-more views, and ultimately pulling sets of views together
correctly to produce some type of computationally-based system.

Historical Context of Modeling
Models and modeling are not new. Without going too far back in history, third generation
languages such as C raised the level of abstract over assembly language. Computer-Aided
Software Engineering (CASE) tools provided other abstractions with some tooling, but the vision
of full automatically generated software was more challenging than could be addressed with
those types of models. The Unified Modeling Language (UML) attempts to unify the best of all
modeling practices with standardized views and diagrams, but the goal of UML-to-code has
some challenges that are discussed in Session 3. For specific domains related to control laws,
the reality of model-to-code has been realized. For example, at a Consortium member event in
1996 members discussed the realization of transforming models to code as reflected in Figure
4. Models represent requirements or design information independent of language, platform, and
architecture. Models are translated into implementations using tailorable code generation to
specific architectures and languages. Configuration parameters are input to the code generators
to specify platform details needed for the target code. The control law software for the F16, F22,
and F35 (JSF) aircraft has been produced using tools such as the Mathworks Simulink and
National Instruments MATRIXx dating back to the 1990s. The models are a valuable asset that
continues to evolve even though the underlying platform continually changes. Models are key
intellectual assets of the company.

Models

Structure/Interfaces

Behavior (functions)

Concurrency

Resources/Environment

Models

Structure/Interfaces

Behavior (functions)

Concurrency

Resources/Environment

Structure/Interfaces

Behavior (functions)

Concurrency

Resources/Environment

SSCI-2008002-MC Version 1.0 September 2008

 8 of 53

UNIX
Windows
Linux
MVS
VxWorks,...Infrastructure

Domain Independence Services

Domain-Specific Components

Infrastructure
Domain Independence Services

Domain-Specific Components

CORBA
SOAP
EJB
DBMS

Model-Based
Generation

Application

Code
Generation
Templates

Configuration
Parameters

Figure 4. Model Based Code Generation

Next Disruptive Technology
This form of model-based generation (the term used in 1996) was focused on code generation.
In a Raytheon article in 2003, MDE was called the Next Disruptive Technology that would
have impact in 5 to 10 years. The article that contained quotes from leaders in the field stated:

The disruptive technology to enable this development is predictive mathematical
modeling of software systems. Such modeling will lead, for example, to model-based
generative programming, producing executable code that is never touched by human
hands, even—especially—in maintenance phases. A true “disruptive” technology is one
that is adopted on its inherent virtues even if its payoff is not yet realized in application or
commoditization. It provides a temporary step backward in order to facilitate greater
gains later. Mathematical model-based development will cost the industry in retooling
and retraining, but it will be to the software industry what the assembly line was to the
automobile industry. In related ways, model-based process compliance will show
similarly tangible returns, which may not be realized until the V&V stage. If a disciplined
model-based development process is adhered to for the entire development
lifecycle (there’s another step backwards), V&V tools will close the development
loop, doubling as requirements management tools, and the development cycle will
become a living dynamic process with stability and correctness properties of its
own.

In working with SSCI organizations, some users are often focused on code generation. It is
important to note in the bolded text that this vision includes not only code generation, but also
model analysis, verification and validation, requirements management, and configuration (or
model) management. A conceptual view of an environment to support this vision is shown in
Figure 5. Conceptually, the domain experts communicate with modelers (or ideally produce

SSCI-2008002-MC Version 1.0 September 2008

 9 of 53

models themselves). Model analysis, such as model checking, proof of properties (e.g., safety,
timing) can be validated early. Different transformation mechanisms produce code for various
platforms and languages, with fully automated testing to ensure that the generated code
operates properly in the different target environments, with full requirement-to-test traceability,
and configuration management based directly on the source model. There are many process
steps that need to be addressed and modeling technologies that need to be advanced and
integrated to support this view. Additional perspectives are provided throughout the paper.

Models

Structure/Interfaces

Behavior (functions)

Concurrency

Resources/Environment

Models

Structure/Interfaces

Behavior (functions)

Concurrency

Resources/Environment

Structure/Interfaces

Behavior (functions)

Concurrency

Resources/Environment

Configuration Management
(Based completely on the Models)

Transformation
Transformation

Transformation
Transformation

Transformation
Transformation

Analysis/
Model Checking/

Proof of Properties

Modelers

Domain Experts
(Requirements)

Simulation

Host

Target

Test
Automation

Verification Evidence

Model Validation
& Verification

Evidence
Complete Traceability

Figure 5. “Near” Idealized View of MDE

Domain-Specific Code Generation of Functional Threads
In the 1990s, several SSCI member companies were using automatic code generation from
MATRIXx models as reflected in Figure 6. Most now use Simulink for these same types of
applications. An important point to note is that the models were used to produce some of the
code from the system. Too often first time users are often misled into thinking that model-based
tools can be used efficiently to generate all of the code in the system. Some of the code
generators might be good at producing code for some aspects of the system, but not good at
other aspects of the system such as real time control. For example, as reflected by Figure 6
code internal to the threads represents control system computational type code, and this code is
embedded and wrapped by manually produced code that is used for controlling the various
tasks of the system. Members need to be more aware of what types of code can be produced
and used. These characteristics and the different levels of model-based capabilities are
discussed in terms of model maturity.

SSCI-2008002-MC Version 1.0 September 2008

 10 of 53

Partition

Hardware (HW)

Thread
A

(80 Hz)

Thread
A

(80 Hz)

Thread
C

(5 Hz)

Watch Dog
Timer

Thread
D

(1 Hz)

Kernel

Thread
D

(1 Hz)

Thread
B

(20 Hz)

Thread
B

(20 Hz)
Conceptual Elements of a Thread

Function

Procedure

Value

Objects/Control Tokens
(Events/Messages
Modes)

Task

Objects/Structures
...

...

Procedure

Function
- Manually coded - Auto generated coded

`̀

MATRIXx*

Subsystems

Units – (“SuperBlocks”) State Charts

Total Control Systems

Embedded
Target
System

Partition

Hardware (HW)

Thread
A

(80 Hz)

Thread
A

(80 Hz)

Thread
C

(5 Hz)

Watch Dog
Timer

Thread
D

(1 Hz)

Kernel

Thread
D

(1 Hz)

Thread
B

(20 Hz)

Thread
B

(20 Hz)
Conceptual Elements of a Thread

FunctionFunctionFunction

ProcedureProcedureProcedure

Value

Objects/Control Tokens
(Events/Messages
Modes)

Task

Objects/Structures
...

...

Procedure

FunctionFunction
- Manually coded - Auto generated coded

`̀

MATRIXx*

Subsystems

Units – (“SuperBlocks”) State Charts

Total Control Systems

`̀

MATRIXx*

Subsystems

Units – (“SuperBlocks”) State Charts

Total Control Systems

Embedded
Target
System

Figure 6. Control System Code Generation

MDE Maturity Model
There are numerous proposals for a Modeling Maturity Model (MMM) that follows in the spirit of
the Capability Maturity Model Integrated (CMMI®) and Software Capability Maturity Model (SW-
CMM®) for discussing model maturity. The levels shown in the model, especially the higher
levels, rely more heavily on formalized models that provide some form of tool related automation
and methodologies.

Sources: Jan Aagedal, SINTEF, September 2006, Anneke Kleppe and Jos Warmer in their book MDA Explained Addison-Wesley

Focus of
Discussion

in
Webinar
Series

Level 5:
Models Only

Level 4:
Precise Models

Level 3:
Models with Text

Level 2:
Text with Models

Level 1:
Text Specification

The software is specified by a natural language text,
written down in one or more documents.

A textual specification is enhanced with several
models to show some of the main structures of the
system.

The specification of software is written down in one or
more models, and natural language text is used to
explain details of the models, but the core of the
specifications lies in the models.

The specification of the software is written down in one
or more models. Natural language can be used like
comments in code. Executable models are developed.

Life cycle is model-driven. Domain engineering
practices are put in place. All the organisation’s
knowledge capitalised in models.

Focus of
Discussion

in
Webinar
Series

Level 5:
Models Only

Level 4:
Precise Models

Level 3:
Models with Text

Level 2:
Text with Models

Level 1:
Text Specification

Level 5:
Models Only

Level 4:
Precise Models

Level 3:
Models with Text

Level 2:
Text with Models

Level 1:
Text Specification

The software is specified by a natural language text,
written down in one or more documents.

A textual specification is enhanced with several
models to show some of the main structures of the
system.

The specification of software is written down in one or
more models, and natural language text is used to
explain details of the models, but the core of the
specifications lies in the models.

The specification of the software is written down in one
or more models. Natural language can be used like
comments in code. Executable models are developed.

Life cycle is model-driven. Domain engineering
practices are put in place. All the organisation’s
knowledge capitalised in models.

The software is specified by a natural language text,
written down in one or more documents.

A textual specification is enhanced with several
models to show some of the main structures of the
system.

The specification of software is written down in one or
more models, and natural language text is used to
explain details of the models, but the core of the
specifications lies in the models.

The specification of the software is written down in one
or more models. Natural language can be used like
comments in code. Executable models are developed.

Life cycle is model-driven. Domain engineering
practices are put in place. All the organisation’s
knowledge capitalised in models.

Figure 7. Modeling Maturity Model

SSCI-2008002-MC Version 1.0 September 2008

 11 of 53

The types of models and associated tool automation often directly relate to the completeness of
the artifacts required to produce a dependable deployable system. For example, the modeling
approach associated with Figure 6, based on Simulink or MATRIXx models are often highly
functional and specified using modeling notations (aka modeling constructs) that are known to
control systems domain specialists. This type of modeling may not apply to other types of
systems in other application domains such as financial or information technology. Therefore
other types of model notations or views might be required. An example in the data modeling
domain is Erwin, which has been used for years to support database design. Organizations that
develop using an object-oriented (OO) method and language might be new to modeling or
considering adoption. The UML is now supported by tools and modeling approaches that might
be more applicable to developers that have been using OO design methods.

Too often members have thought that simply using models will result in higher ROI, but
unfortunately that is not always the case. There are a number of limitation and issues with using
UML and the associated tools for automatic code generation. Session 2 discusses more about
modeling maturity, and in particular discusses how to use concepts like the MMM from an ROI
perspective and from a process practices point of view that defines key modeling practices
required to maximize the ROI.

Unified Modeling Language
UML is a general purpose modeling language, and attempts to unify many modeling practices. It
allows almost everything to be modeled, and because of that it has grown to be extremely large
and complex, including an 800 page specification. UML provides a set of diagrams to depict
software structures graphically, as shown in Figure 8. Diagrams are developed as separate
entities that express different aspects of software, however UML cannot fully define the
relationships between diagrams and detailed behavior is difficult to define in UML. Consistency
across diagrams is largely left to be resolved by the designer, and without detailed behavior
code generation can be limited to structural aspects of the code. As a result tools often combine
structural aspects of UML models with manually developed code to specify the behavior. This
can result in the need for synchronization between manually developed code and the models.

Figure 8. UML Diagrams

SSCI-2008002-MC Version 1.0 September 2008

 12 of 53

There are other approaches for specifying behavior such as the use of action languages that
are used with UML diagrams in place of code. Domain Specific Languages (DSLs) are also
emerging, because UML cannot provide inherent support for every application domain. DSLs
are more precise, more constrained, with clear semantics. Tool support makes DSLs a reality,
and metamodels are often used to define these more specialized languages. UML is sometimes
used for defining a DSL. DSLs are not new, for example Backus Naur Form (BNF or EBNF) with
tools yacc and lex is a good example of a DSL and associated set of tools that have been
around for decades. Simulink might be one of the best known DSLs. DSLs and metamodels are
discussed in greater detail in Sessions 3 and 4.

Confusing Terminology
The specialization of modeling approaches, standardization, and tool support has led to a
number of different terms that relate to MDE. The “model driven engineering” or MDE is not
currently trademarked and therefore it is used to characterize the general set of model-based
practices. There are many related MDE approaches, and the following provides a non-
exhaustive list of a few commonly used terms:

• MDA®: Model Driven Architecture®
• MDD™: Model Driven Development
• MDSD: Model Driven Software Development
• MDSE: Model Driven Software Engineering
• MIC: Model Integrated Computing
• DSL: Domain Specific Languages
• Software Factories
• MBT: Model Based Testing

There are different tool companies that support these approaches too. For example, MDA is an
OMG standard, and many companies were involved with the formalization of this standard. In
2008 there are about 60 companies listed on the OMG website that provide MDA-related tools
or services. MDA is based on a set of OMG standards such as:

• UML – Unified Modeling Language
• MOF - Meta Object Facility
• XMI – XML Metadata Interchange (XMI®)
• OCL – Object Constraint Language
• CWM - Common Warehouse Metamodel

MDA proposes two separate parts of specification:

• Platform Independent Model (PIM) are used to specify structure and behavior
related to a specific domain or application

• Platform Specific Model (PSM) is a specification of implementation of the
functionality on a specific technology platform.

Transformations are iteratively used to transform PIMs into PSMs and finally deliver running
systems. More details are provided on tools and transformation related to MDA in Sessions 3
and 4.

SSCI-2008002-MC Version 1.0 September 2008

 13 of 53

Session 2: How Does MDE Impact My Process?
SSCI members that consider adoption of MDE often have higher levels of maturity as defined by
the CMMI® and SW-CMM® guidelines. Although a high level of process maturity is not required
to get started with MDE, those concerned with process maturity need to understand the process
impacts before they start using MDE on programs. These considerations include not only the
typical development-related processes and artifacts, but also important information that can go
into program proposals that identify program milestones and deliverables, documentation,
configuration management, as well as the need for education and training requirements of both
the company team and potentially the customer. Some of these process related issues are not
well understood by the proposal teams.

For organizations that use a more agile process, MDE is often iterative in nature with continuous
builds and testing supported by automatic code generation and systematic test generation. An
MDE approach can complement an agile process while providing significant productivity
benefits with added rigor to support complex system development. This session includes
information on how agile teams most often use modeling.

This section of the paper includes:

• Process-related considerations impacted by the use of MDE
• Potential changes to lifecycle schedule and deliverables that can impact

proposals
• How and why to conduct pilot projects to reduce the risk of adoption
• The need incorporate modeling standards
• The importance of modeling reviews
• Project types that might not be appropriate for MDE

Model Maturity: ROI versus Key Practices
Figure 9 adds a few examples of modeling approaches that are associated with the MMM levels
initially shown in Figure 7 to explain capabilities versus ROI. Consider the following examples:

• The MATRIXx example shown in Figure 6 identified as MATRIXx 1996 in Figure
9 might be considered about a Level 4, because precise models are used to
produce the code.

• The JSF Simulink 2002-2008 example identifies a modeling approach that might
be a slightly higher Level 4, because Simulink models are more expressive in
2008 than they were in 1996.

• UML-oriented modeling tools and methods vary significantly and some of the
earlier versions (e.g., UML 1 and UML2) used models integrated with text or
code to produce the code and the ROI can vary significantly.

• The xUML (i.e., called executable UML) is a UML-variant supported by a few tool
vendors and the tools combine UML diagrams with a programming language
independent action language to capture the behavior of a model formally; these
tools often produce code directly from the models and the action language can
be targeted to different platforms thus providing higher ROI than UML based
tools that use code to specify the functional behavior.

SSCI-2008002-MC Version 1.0 September 2008

 14 of 53

• The survey data provided in Figure 10 suggests that agile teams often do use
models, and because the whiteboard sketches are considered valuable as
reflected in Figure 11, those types of models help structure the communication of
an agile team during early phases of development. Although these whiteboard
models are informal, they add value as reflected in Figure 11. It is not necessary
to have a high level of modeling maturity to get ROI.

• As shown in the upper right of Figure 9, full model-based code generation
approach with model analysis and automatic test generation, will likely be
considered mature and provide high ROI, although such methods and tools
probably do not exist. For example, models of concurrency that capture the
distributed characteristics of the system would be needed, and this is still a topic
of research discussed in Session 4.

• DSL and MDA approaches will cover the spectrum; although many DSL are
focused on code generation or other types of formal analysis, some system-level
DSL like SysML might only formalize the descriptions of the system structure.

DSL
&

MDA
MATRIXx

1996

JSF - Simulink
2002-2008

UML1

UML2

xUML

NOTE: low maturity isn’t
necessarily “bad”

need to assess with
respect to expected ROI

Level 5:
Models Only

Level 4:
Precise Models

Level 3:
Models with Text

Level 2:
Text with Models

Level 1:
Text Specification

Level 5:
Models Only

Level 4:
Precise Models

Level 3:
Models with Text

Level 2:
Text with Models

Level 1:
Text Specification Time

M
at

ur
ity

Time

M
at

ur
ity

Agile Modeling

Full model-based
auto code, model

analysis & auto test

Figure 9. Model Maturity versus Time

Low maturity is not necessarily bad, but what members need to know is that if they are using a
lower maturity modeling approach, they need to be sure that they are not making claims in
proposals, contracts or project estimates that assume a high ROI. Consider the following
example scenario of a project that might be using UML models supplemented by text and code.

SSCI-2008002-MC Version 1.0 September 2008

 15 of 53

Figure 10. Agile Survey on Use of Modeling

Figure 11. Value of Agile Work Products

Example Project Scenario
As discussed in Session 1, some organizations that may have tried MDE, and in particular some
type of UML-based modeling process and tool might have lived through the following scenario.

1. Project uses models that are initially a proper reflection of software being built

- Models show structure of actual code (e.g., class diagram)

- Provide documentation for detailed design and code

SSCI-2008002-MC Version 1.0 September 2008

 16 of 53

2. Transition of model to code is done mostly manually. The models represent structure of
code through class diagrams, but the behavior is not sufficiently formal and thus a
programming language is used to complete the behavioral parts of the model.

3. With the passage of time, and continual changes, the models do not reflect the actual
code anymore. The code is updated until the customer is satisfied or the code is
changed when new requirement or bug fixes are required.

4. The code is now the product, because keeping the models up-to-date is often
considered to be unimportant and too time consuming.

5. The models that were once perfect as code documentation are now useless.

Continuing with the theme of the following example, Figure 12, based on a diagram originally
created by John Daniels3, reflects on some of the issues that often occur with UML modeling
where the behavior is described in code. This particular process of synchronizing the code with
the models is sometimes referred to as round trip engineering. As reflected in the scenario,
when opposing forces such as time and schedule pressures begin to impact a project, the focus
stays on the code and not the models. Armed with knowledge of these common pitfalls, there
are a few recommendations and guidelines that potential new users should consider during the
process of planning for MDE adoption.

Figure 12. Another Perspective on Model Levels

3 MODELWARE – 511731 – D2.9 MDD TCM Guidelines – Revision 1.5

Level 5 Level 4 Level 3 Level 2Level 1 Level 5 Level 4 Level 3 Level 2Level 1

SSCI-2008002-MC Version 1.0 September 2008

 17 of 53

Process Guidance - Tools and Methods
MDE tools and standards are evolving, but methods and usage standards are not inherent in
the tools, and organizations must define methods, standards and tool usage that align with their
project and organizational drivers. In addition, they must align their ROI expectations when
developing proposals and cost and schedule estimates. There are a number of effective ways
for adopting and preparing for the use of MDE. A non-exhaustive list of guidelines follows:

• To start, use pilot projects to thoroughly understand the MDE tools and methods.

Begin with some type of system application, or subsystem that is well understood so that
process comparisons can be made. The comparison may be subjective, so that is why it
is important to use some type of existing system, ideally one that was recently
completed.

• Think about a modeling methodology that aligns with existing processes.

Many of the tools do not prescribe a particular method, but based on the ways they
produce code, or documentation, may impose some process constraints that may not
align with your organizational processes. Consider tool alternatives and select a tool or
tool that fits in with process and technology change objective and constraints of your
project and organization.

• Define methods for your project that constrain the tools to meet your specific
needs. Advanced users can create or extend tools that use languages such as
the Object Constraint Language (OCL) that checks to ensure guidelines on
developed models are satisfied.

• Plan for integration of system/hardware modeling with software modeling tools.

Understand the interfaces between the different hardware and software modeling tools
and methods to ensure that inconsistencies that can cause late integration problems are
addressed before integration.

• Define lifecycle objectives based on understanding the tool capabilities and
current state of organizational capabilities.

For example, for a first time user it might be reasonable to assume that the modeling will
be used for structural code generation and full document generation from models.

• Understand auto-code generation capabilities.

- Understand what aspects of structural and behavioral models contribute to code.

- Identify code generation parameters or template, because different parameters can
significantly impact the way code is produced (e.g., code may be optimized for real-
time performance as opposed to memory space efficiency).

- Identify modeling constructs that produce “good” code, and add that information to
methods guidelines and standards.

- Create baseline models for re-validating code generator from version-to-version of
the tool, and update and maintain those validation models with each new tool
version.

• Understand the run-time environment that might be assumed by the code
generator.

SSCI-2008002-MC Version 1.0 September 2008

 18 of 53

- Assess the impacts of run-time overhead, and identify if or how the run-time code
can be configured, or determine how to produce code that does not rely on a run-
time environment. As reflected by Figure 6, it might be necessary to wrap generated
code with run-time control such as tasking or threads that has been created through
manual code development.

- Plan to address concurrency issues external to code generation. See more in
Session 4 on the subject of concurrency.

• Determine how model artifacts support required document generation and
assembly.

- The organization of the modeling artifacts can impact document generation.
Configuration management of the model can also impact the document generation.

- Establish how requirement-to-test traceability is documented, and understand how
links must be created through the model views and associated model artifacts.

- Ensure that the customers understand the new types of documents and deliverables.

- Take into consideration requirements for integrating system, software, and hardware
documentation deliverables. For example, how are the interface control documents
related to the models?

• Understand how testing is going to be performed.

Evolution and maintenance can consume seventy percent of the product development
lifecycle and testing is often far more critical once the initial releases of the system have
been developed and deployed, however testing-oriented support from models is not
often addressed during the modeling and tool selection process.

- During the pilot project, determine if the selected modeling tools provide support for
automatic test generation.

- Determine if the auto-code generation or run-time environment constrains how
testing and test coverage is accomplished. Auto-code generation may change the
name of model variables in the auto-generated code. Determine if there is
information that maps model names to test interfaces.

- Add guidelines to ensure that the modeling methodology enforces design for
testability.

- If applicable, determine and plan for the tools and methods for documenting test
coverage.

Process Methods and Configuration Management
Many of the activities discussed in terms of methods and the associated tooling should be
formalized and incorporated into project-specific methods and review procedures.

• Establish standards and reviews for use of the tools.

Describe modeling constructs that are permitted for use, as well as those that should not
be used, because they can result in poor quality code (e.g., performance is too slow, not
designed for failsafe behavior of safety critical applications). Ensure the guidelines are
created and review processes are used. Too often organizations that understand the
importance of code reviews do not follow those same types of guidelines for modeling.

SSCI-2008002-MC Version 1.0 September 2008

 19 of 53

The guidelines should also identify:

• Code generation parameters and templates, for example, variations in the
parameters can have a significant impact on code size or code speed.

• Naming conventions

• Project structure and organization

• Determine the modeling artifacts that must be configuration controlled.

• Model management and model merging may not be as straight forward as code-
based and file-based configuration management.

• Establish guidelines for how the tools must be version controlled to ensure
deliverables are reproducible from source artifacts maintained under
configuration control.

• Plan a process to understand impacts of new tool versions prior to permitting the
new tool results to be deployed. Tools can have significant changes from version
to version and the outputs produced from one version might be different or
unexpected in the next version.

• Assess the potential impact of tool chain integrations.

Proposal Impacts
Some members have stated that the proposed use of modeling has been a contributing factor to
winning a proposal award. Other members are struggling to advance their modeling capabilities,
because the customers are requesting the use of model approaches on programs. In either
case, there are a few things that proposal team should ensure are addressed in the proposals,
including:

• Ensure proposal costs and schedules align with ROI that is achievable.

It is important that the modeling capabilities of the organization align with the expected
ROI gains. Often an advanced demonstration team may be involved in the proposal
process, but it is important that the development team have proper training and
understanding of the guidelines and standards.

• Make sure that the tool acquisitions process has been completed and understand
the implications of tool licensing.

• Ensure that milestone schedule aligns with new modeling process.

Modeling can impact traditional milestones. Typical customer review processes that
includes preliminary design review (PDR) and critical design review (CDR) are often
based on paper documents. Modeling may use alternative forms. Ensure that the
customer understands the information. This may require training for the customer.

Precise models that replace traditional documentation need more details. Understand
how they can be presented incrementally as they evolve rather than as a completed
document.

• Prepare subcontractors if the interface between the teams is going to use
models. They too must have processes and procedures in place to support
usage and development from models.

SSCI-2008002-MC Version 1.0 September 2008

 20 of 53

• Be prepared to train customer and subcontractor on the project-specific use of
models and their associated artifacts and measures.

Lifecycle Evolution and Maintenance
Modeling often starts with a new project and the early lifecycle activities such as architecture
and design often get the most focus, however some of the biggest gaps in the design of the
modeling process don’t account for longer term concerns such as testing that can account for a
significant percentage of the effort during the evolution and maintenance of a program.
Therefore it is recommended that the following topics be considered as early as possible:

• Verification and validation

Modeling practices are generally focused heavily on code production, but verification is
not guaranteed and testing is still required. Models can have defects, and although
review processes should be used in an attempt to find model defects, defects can be
hidden in complex models. Modeling tools are advancing with additional analysis and
test generation capabilities; factor these long-term needs into the pilot project and model
tool evaluation process. See Session 4 for more information on model analysis and
testing support.

• Integration between systems, hardware, and software

The methodology and artifacts handoffs should be planned and coordinated. Tools for
systems models may not integrate with software or hardware modeling tools. The same
issues at system-of-system levels interfaces between systems can have significant
mismatch, especially when different teams, disciplines, and subcontractors are involved.
See Session 4 more information.

Transitional Pilots
Planned pilot projects that precede the project development are strongly encouraged, but some
members have long running projects, and may be forced into updating their capabilities during a
program. Transitional pilots can provide stakeholders quickly demonstrated evidence within their
organization to commit to updating their process to use modeling on a scheduled deliverable. In
addition, these pilots help reduce the risk of over commitment, because they can provide some
insight into ROI from modeling processes and tools.

• Transition from a pilot project to a thread of an existing project

- Select a thread that is likely to change often or have features extend it

- The most leverage and benefits come from reusing and evolving one or more related
models

• Identify the right projects for transitioning from an existing process to a new
process to meet schedule

- Select a project prior to requirement phase so that modeling can start early and help
improve requirements, while providing sufficient time to collaborate with design team
to improve the interfaces to support testability, which reduces risk of schedule
slippage caused by the startup overhead of a new modeling process.

SSCI-2008002-MC Version 1.0 September 2008

 21 of 53

Session 3: What's Happening with MDE Tools?
Tools are an essential part of MDE. Tools formalize modeling information that includes
structural information such as architectural elements, interfaces, behavioral information, and
other system properties. The formalization permits tools to analyze, transform, trace and
simulate model information, as well as synthesize and generate other artifacts such as code,
tests, documentation, and reports. This section discusses the various types of tools that support
MDE, and discusses commercial as well as free open source tools without promoting any
particular set of tools. No one tool provides complete support for the entire lifecycle and
therefore tool chains and associated standards are emerging to provide greater lifecycle
coverage. This session introduces some advances such as DSLs which are discussed in more
detail in Session 4.

The objective of the Webinar and this session in particular is to cover tool capabilities without
recommending any particular tool or vendors. Tool and associated vendors are mentioned as
examples, but this should not be taken as a recommendation by SSCI.

Tools Targeted to Specific Domains
SSCI members produce systems in many different domains, and some of the modeling tools are
targeted towards embedded systems, while other are more applicable to information or
enterprise systems. Therefore, when looking at the various tool technologies it is necessary to
consider the application domain needs too.

Embedded systems have been developed and verified using models dating back into the 1980s.
They often have more variation when it comes to hardware, which is sometimes specialized or
custom made for some applications. Embedded systems often have requirements for high
assurance, meaning that systematic verification is often necessary. These types of systems
may also be used on safety critical applications, and may also require run-time environments
that have been proven to meet safety critical needs. The software involved in controlling
mechanical devices such as aircrafts or vehicles often relies on control system models such as
Simulink as mentioned in Session 1.

Enterprise or IT systems may have in the past used data modeling for the database, but there is
an emergence of models being used on these types of system. It’s often difficult to apply models
to legacy and mainframe development, but new areas such as web and service-based systems
are prime targets for model driven engineering, and some of the tool are targeted to these
specific domains.

Historical Perspective of Tool Suppliers
In 2004, the SSCI Board of Directors authorized a project to report on the benefits and risks of
“automatic code generation” from modeling tools. A SSCI report (SPC-2004010-MC) covered
several different tools as reflected by the representative sample shown in Table 1. Many of the
tools in the table exist today, but the owner of the tools may now be a different company due to
acquisitions. The purpose of the report was to categorize the different types of code generation
tools, and describe the benefits and risks for using and adopting the tools. Many of these tools
have continued to evolve and some products provide significant lifecycle coverage. Some also
promote certain methods, while others attempt to be method independent.

SSCI-2008002-MC Version 1.0 September 2008

 22 of 53

Table 1. Automatic Code Generation Survey

Tool Name and Company Category Comment
Simulink
Mathworks
MATRIXx
National Instruments
SCADE
Esterel Technologies
BridgePoint
Project Technologies now Mentor

Statemate
Ilogix now IBM/Telelogic
Rhapsody
Ilogix now IBM/Telelogic
Rose XDE
IBM
Real-time Studio Professional
Artisan
TAU/Developer
Telelogic now IBM/Telelogic
VAPS Behavioral
eNGENUITY Technologies Translative

(hybrid)

Behavioral Used for control system modeling such as aerospace, avionics, automotive, and can
include state chart diagrams in a model. Model analysis and test generation support

Behavioral Used for control system modeling such as aerospace, avionics, automotive. Combines
state transition diagrams. Model analysis and test generation support available from several

Behavioral Used for control system modeling such as aerospace, avionics, automotive, and energy.
Combines state chart diagrams. Has some support for verification.

Translative Executable and translatable Unified Modeling Language (xtUML), with profile that relies on
a language that extends UML 2.0.

Behavioral State machine-based, with formal action language. Used for embedded systems with
support for test.

Structural /
Elaborative

UML 2.0, with coding framework for C, C++, and Ada. Some support for test execution.

Structural /
Elaborative

UML 2.0, coding framework-based.

Virtual Applications Prototyping System (VAPS) is a tool for building data-driven, interactive,
graphical user interfaces, or human-machine interfaces.

Structural /
Elaborative

UML 2.0, coding framework-based.

Structural /
Elaborative

UML 2.0, coding framework-based.

Lifecycle Tool Integration (aka Tool Chains)
There is still a need to provide greater coverage over the lifecycle, going beyond code
generation and document generation. Most of the commercial and free open source tools
provide varying levels of support for:

• Model development (e.g., model editors)
• Code generation
• Document/report generation
• Traceability – diagram relationships

There is greater variability and less coverage when attempting to address capabilities such as:

• Simulation/animation
• Model analysis (for example, does a model conform to a metamodel?)
• Model checking or proof (for example, does a model satisfy certain properties?)
• Test generation (verification)
• Model management (extending configuration management)
• Model transformation (to leverage other tools)
• Model integration

Tool integration through tool chains is a way to obtain greater lifecycle coverage. The remainder
of this section discusses tool capabilities from the point of view of:

• Design models – often focused more on design and code generation
• Requirement models – provide ROI without requiring details to support code

generation
• Metamodels – used to support development of DSL and represent rules for

source models

SSCI-2008002-MC Version 1.0 September 2008

 23 of 53

Design Model Perspective
Design models ideally describe the behavioral specification used as the basis for code
generation. Design models attempt to represents “what’s in the box,” and are graphical
representations of the program, but often require formal text specifications too. They are the key
ingredient needed for code generation or synthesis of hardware.

As reflected in Table 1, there are different types of code generation tools that support both OO,
and non-OO modeling tools. Some tools do not produce code for the entire application;
therefore, the following is one way to classify4 the different code generating capabilities of the
tools:

• Structural (aka Elaborative): Generates code frames and stubs

Some code generation tools are coding frameworks. The models produce some of the
code for the target application, normally the structural aspects of the code, like the
modules or classes. Often, these tools provide an integrated development environment
where the code can be embedded within the tool (e.g., Rhapsody, Rose). Many of the
tools aligning with the classification of the MDA initiative produce skeletons and stubs of
the implementation but are not executable applications without the addition of behavioral
code that is developed manually.

• Translative: Generates code using translation templates

Application-independent modeling gives users control over translating models into code.
These modeling approaches often use graphics and languages formalism like the
behavioral approach. The user often can tailor the translation capabilities.

• Behavioral: Generates code using models and action specifications

For example, the code generation formalizes the semantics of each model construct, as
shown in Figure 13, including determining the dataflow, control flow, data types,
functional hierarchies and calling structure. Simulink/Stateflow models represent
structural (interfaces) and behavioral information formally, and supports control system
and state machine modeling from a graphical set of modeling constructs (e.g., see
Simulink Library Browser in Figure 13). They not only support code generation, but often
support simulation of the models.

4 Bell, R. Code Generation from Object Models, http://www.embedded.com/98/9803fe3.htm, March 1998.

SSCI-2008002-MC Version 1.0 September 2008

 24 of 53

Figure 13. Behavioral Model Example

Model analysis and automatic test generation can be applied to models that can fully describe
structure and behavior. These capabilities provide additional ROI, because model defects can
be identified early, and testing can be performed continuously during the development,
evolution, and maintenance of the design. An example is provided in Session 4.

Model Driven Architecture

MDA is an approach supported by about 60 different tool and service companies that are
affiliated with the OMG5. There are many variants to design-based tool support and MDA
compliance is not required to get ROI from MDE. Figure 14 provides a perspective on the MDA
concept with emphasis on the artifacts that must be created as inputs to leverage the tools, and
those output that can be produced from the tools. The most fundamental aspects of the MDA
concept start with the PIM and when combined with platform specific details such as a language
choice, database, and middleware preferences there is one or more transformations to a PSM
that could support code generation. Conceptually, this is similar to the process that occurs with
Simulink models as is discussed in Session 4, but this is also similar to what has been done in
the synthesis of hardware using hardware description languages such as Verilog Hardware
Description Language (VHDL). MDA is simply a concept that is associated with OMG standards
such as UML and OCL. Therefore, the focus is on the different types of modeling capabilities,
not specifically named tools or standards.

As discussed in Session 1, UML is a large and general standard, and platform independent
models can be described in a language that is a subset of UML or related variants, and possibly
a DSL. The key artifacts associated with MDE, shown in Figure 14, are discussed in the order in
which they are often leveraged in the development process:

5 Companies providing MDA type products and service as of 2008; shttp://www.omg.org/mda/committed-
products.htm

SSCI-2008002-MC Version 1.0 September 2008

 25 of 53

1. Documentation is often an output of a modeling approach, and it should be leveraged to
reduce the use of textual documentation. Documentation can be produced through some
of the formal models that might be used to produce code, but other models that might be
UML-based might not be precise enough to support formal model analysis, yet they
provide structured information that is part of the documentation for the projects.
However, using models for the sole purpose of automating document generation will
probably not result in ROI.

2. Traceability is often supported by most modeling tools; tools support linking model
elements together, and this can provide the basis for traceability, which should ideally
cover requirements through test.

3. Code generation as discussed above in terms of the MDA concept involves the
development of a PIM that can be defined based on model editors that support UML or
other modeling notation such as a DSL. There are many possible platform-specific
details such as a language choice, database, and middleware preferences that can be
added based on the different tools and target platform. Although only one transformation
is shown in Figure 14, there can be several transformations required to produce code or
synthesize hardware.

4. Simulation of a model is possible if the model represents behavioral details. Simulation
can be valuable for validation of the system behavior with domain experts and
customers of the system.

5. Validation evidence related to checking models for certain properties (e.g., timing) is a
broad subject with ongoing research as described in Session 4. Model validation
includes identification of defects within the model, but a more basic set of validation
evidence as reflected in Figure 14 includes the following scenario. A PIM metamodel
defines the rules and constraints for a particular DSL, and model analysis tools that
might use OCL can be used to verify that any specific model conforms to its metamodel.
This concept is similar to the idea that a BNF grammar is used as the basis for
specifying the syntax of a language (e.g., C++), and a compiler checks to see that the
source code is syntactically consistent with respect to the BNF metamodel. Similarly
checkers can provide assurance that a source model (e.g., PIM) conforms to that
metamodel. However, model analysis capabilities usually cover other types of semantic
analysis and provide model validation evidence as an output. A non-MDA model
analysis example is provided in Session 4.

6. Verification evidence ensures that the target implementation satisfies the models. This
too often is done manually, but model-based test automation is evolving that can provide
comprehensive verification evidence demonstrating model-based test coverage of the
associated implementation. Automated support for testing can provide significant ROI
after the initial release of a system, as model evolution and maintenance involves
significantly more testing than development. Models for testing may include information
from a PIM and PSM, as well as other test related details such as input ranges, test
coverage criteria, and test sequencing criteria. An example is provided in Session 4.

7. Configuration management, sometimes called model management, may not be thought
of as an output of the modeling process, but it is a key element important to modeling
tools. Configuration management of models can be significantly different than
configuration management of code or documentation files, and therefore when planning

SSCI-2008002-MC Version 1.0 September 2008

 26 of 53

to select a tool for project use determine the tools that provide the best support for your
organization.

Inputs OutputsTools & Transformations

Model/
DSL

conforms to

Platform
details

Language,
Database,

Middleware,
etc.

Application
Requirements

PSM

Transformation

Code Generation 3) Code

Other
Models

Doc. Generation

7) Configuration Management

Test
details

Model
Analysis

6) Verification
Evidence

1) Documentation

2) TraceabilityPIM
Metamodel

Test
Automation

5) Model
Validation
Evidence

PIM

4) Simulation
Results

Figure 14. Artifact Perspective Related to Generalization of MDA Concept

Eclipse Open Source Platforms

Some of the more established tools were developed before the Eclipse platform was created or
emerged into a significant basis for tools. Currently, there are approximately 70 modeling
projects, many which include integration from commercial packages into Eclipse. Just because
a product is integrated into Eclipse, the tool is not necessarily free. There are different license
strategies and users should make sure that if they plan to use or extend the products that they
can comply with the licensing terms. However, for pilot project analysis, and to better
understand tool technologies, Eclipse-based tools provide a substantial basis for getting started.

The Eclipse Modeling Project, as reflected in Figure 15 integrates a number of different
capabilities that are leveraged by open source and commercial tools. The framework evolved
from OMG standards efforts and contributions by IBM, Borland and others, and it addresses
needs of both the embedded system and enterprise communities. For example, see the next
section on Structural/Elaborative Code Generation

SSCI-2008002-MC Version 1.0 September 2008

 27 of 53

Figure 15. Eclipse Modeling Project

Structural/Elaborative Code Generation

For users unfamiliar with the concept of structural or elaborative code generation there are free
open source plugins such as Omondo that can be used to quickly understand the concepts of
structural/elaborative code generation. By constructing a simple class diagram, the tools
produce from an UML diagram and class associations the structural elements of Java code
shown in Figure 16. The Address class in the UML diagram is directly associated with the Java
code Address.java. Attributes and operations added to the UML class are reflected dynamically
in the Java code.

SSCI-2008002-MC Version 1.0 September 2008

 28 of 53

Figure 16. Class Diagram and Associated Java Code

Eclipse Modeling Framework (EMF)

The EMF project is a modeling framework and code generation facility for building tools. It
represents information mostly related to class diagrams in UML, and was derived from
OMG MOF. It is leveraged by many projects and modeling tools, for example it is the underlying
foundation of the OpenEmbeDD platform as shown in Figure 17, which is an Eclipse-based
"Model Driven Engineering" platform dedicated to Embedded and Real-Time systems (E/RT).
The OpenEmbeDD project aims to offer engineers who design and develop E/RT software the
means to express, simulate, validate and test the targeted system before any component
implemented. For example, the Topcased tool kit supports:

• Graphical editors for generic modeling tools (e.g., UML)
• Graphical editors for modeling tools, dedicated to real-time and to embedded

systems :

- Structured Analysis Model (SAM)

SSCI-2008002-MC Version 1.0 September 2008

 29 of 53

- Architecture Analysis & Design Language (AADL)

- SysML
• Generation of graphical editor for models
• Model transformations
• Anomaly Management, Version Control, Requirements Traceability
• Documentation generation
• MARTE: OMG UML profile for Real Time systems; another domain specific

language (DSL) – see Session 4 for more information.

Figure 17. Open EmbeDD Platform

Requirement Models
Requirement models provide a different perspective on modeling that can provide significant
ROI for the effort involved in producing the model. A requirement model describes the behavior
in terms of the interfaces to a component or system. A requirement model describes “what the
box should do” as opposed to a design model that describes “what is in the box.” People
sometimes confuse requirement management such as that supported by tools like DOORS with
requirement modeling. To clarify, tools such as DOORS, as shown in Figure 18, manage
requirements using an outline form, much like a requirement specification document. It has
capabilities to link and report on additional artifacts, but the information is not formalized like
models, although DOORS could link to a formal model. Use cases based on a template (e.g.,
precondition, postcondition, main scenario, alternative course) add structure to requirements,
but are not formalized as models. SysML supports a diagram for requirements, and it provides

SSCI-2008002-MC Version 1.0 September 2008

 30 of 53

greater requirement structure with visible traceability, as shown in Figure 18 but the information
is still mostly text.

DOORS® SysML

Figure 18. Requirement Management versus Modeling

The Software Cost Reduction (SCR) Method6 created by Naval Research Laboratory formalized
concepts for requirement modeling. Simply stated, behavior is formally defined in terms of:

• System inputs, outputs, terms, and mode classes
• Condition Tables - define values in terms of computations when associated

conditions are met
• Event Tables - define values in terms of computations upon occurrence of

discrete events
• Mode machines (classes) are simple state machines with:
• Modes (states) and transitions

There are a number of tools for SCR that support modeling, simulation, model analysis, model
checking, proof, and verification (testing). There are significant resources that discuss SCR-
related tool and case studies conducted by SSCI members7.

One SSCI member documented that significant benefits achieved through the use of
Requirement Modeling8. Figure 19 provides a conceptual overview of the roles and flow of the
artifacts that ultimately result in the target software. Figure 19 represents how the use of models
was integrated into the existing project process. The adapted process included both the
traditional process steps and roles (top of figure), and modeling extensions (bottom of figure)

6 Heninger, K., Specifying Software Requirements for Complex Systems: New Techniques and Their
Application, IEEE Transactions on Software Engineering, Vol. SE6, No. 1, Jan, 1980.

Heitmeyer, C., A. Bull, C. Gasarch and B. Labaw, SCR*: A Toolset for Specifying and Analyzing
Requirements, Proceedings of the Tenth Annual Conference on Computer Assurance (COMPASS ‘95),
June 1995.
7 The Engineering of Model-Based Testing: Guidelines and Case Studies, SSCI-2005005-MC, Version
01.00.25, July 2005.
8 Part accepted to CrossTalk – date for publication not known at release of this whitepaper.

SSCI-2008002-MC Version 1.0 September 2008

 31 of 53

used to develop the application software. The system engineer develops textual requirements
as well as any other type of analytical model that are captured in a Software Requirement
Specification (SRS). The lead software architect identifies the components of the software
architecture and works with the software requirements modelers to formalize the requirements
and associated interfaces into models. The Software Requirements Modeler develops
requirement models from the SRS and interface control document (ICD) using a modeling tool
that supports the SCR method. Models capture behavioral requirements and interface
information (e.g., inputs, outputs, types, ranges) extracted from an ICD.

Traditional System/Software Development ProcessesTraditional System/Software Development Processes

Condition Tables

Event Tables

Mode Tables

Condition Tables

Event Tables

Mode TablesMonitored
(Input)

Variables

Controlled
(Output)
Variables

Term
Variables

Common
Conditions,

Events & Modes

Modeling Extension

System/Requirements
Engineer

Lead Software Architect

SDD ICD

Software
Requirements

Modeler

Designer/Implementer

Code & Target Builds

SRS

Requirement
Simulator

Figure 19. Process Roles and Flow

The modeling process often identifies requirement or interface problems that must be resolved
through interaction between the system engineer or software architect. For example, interface
specifications were captured in a database that is shared by the project team, including
subcontractors. The requirement modeling process and associated tools force the interface
information to be complete and consistent. Additional problems or anomalies are identified by
the system engineers through requirement simulation of the models. Validated requirement
models are linked to the Software Design Document (SDD). The designers and implementers
work directly from the SDD, requirement models, and interfaces to implement the code. These
modeling-related extensions to the process help to improve the overall performance of the team.
Better requirements and interface documentation allow software designers to focus on the
detailed design and implementation of the code rather than chasing requirement issues or
making assumptions that can result in costly rework.

Figure 20 shows measurement data that provides a basis for discussing the benefits of using
requirement modeling. Figure 20 compares data from the new (i.e., process with requirement
modeling) against old (i.e., traditional text-based requirements process) using measurement

SSCI-2008002-MC Version 1.0 September 2008

 32 of 53

data that was captured in 100-day increments from the start of each respective program. The
software system developed by both projects was very similar. The base measure that was
common to both program, shown in Figure 20 is the total number of accumulated integration
problem reports (IPRs). The number of IPRs for the new program was slightly higher than the
old program through the first 400 days of the program. The number of IPRs for the old project
increases significantly at about the 500th day of the program, and by the 800th day of the
program the number of IPRs on the old program is about double the number of IPRs on the new
program. The modeling activities helped find defects early and helped to minimize the defects
later in the program even though both programs had ongoing releases associated with updated
requirements over the multi-year program.

Total IPRs versus Days

100 200 300 400 500 600 700 800 900 1000

Days Into Program

To
ta

l I
PR

s

C-5 AMP
C-5M

Old
New

Total IPRs versus Days

100 200 300 400 500 600 700 800 900 1000

Days Into Program

To
ta

l I
PR

s

C-5 AMP
C-5M

Total IPRs versus Days

100 200 300 400 500 600 700 800 900 1000

Days Into Program

To
ta

l I
PR

s

C-5 AMP
C-5M

Old
New

New First ReleaseOld First Release New First ReleaseOld First Release

Figure 20. IPRs versus Day Into Program

Another benefit of the models is that approximately 90% of the detailed software design
descriptions rely on the requirement models. The requirement model is linked to the SDD rather
than having the design specified in text. Models represent both high-level and low-level
requirements (i.e., derived requirements). Unusual or complex designs are documented in the
SDD using text, flow diagrams, or other engineering drawings as needed. This is another
process efficiency gained through leveraging the requirement modeling process. The model
provided a formal, precise statement of the requirements that could be referenced directly in the
SDD.

Metamodels
The final perspective on models is the metamodel. A metamodel describes how modeling
constructs can be used together. Metamodel tool support has resulted in more rapid creation of
modeling tools. Some tools use UML as a metamodeling language and through a metamodel a
DSL can be defined. As an example, Figure 21 reflects on the Generic Model Editor (GME) and
associated tool suite developed by Vanderbilt. Metamodels allow rapid development of DSLs
and associated modeling editors and tools. Microsoft provides a free DSL toolset that integrates

SSCI-2008002-MC Version 1.0 September 2008

 33 of 53

with the Visual Studio, and although the details of the Oslo Project9 have not been fully
disclosed, it appears that Oslo will be a DSL or set of DSLs that allow models to be used to
create various types of applications on Microsoft specific platforms. See Session 4 for additional
details about how DSLs are used for many different types of languages.

Figure 21. Generic Model Editor

Session 4: What's Next to Come with MDE?
Session 3 identified types of tools to cover design, requirement and metamodeling. The focus in
the past has been on building models to support some type of hardware or software synthesis
(e.g., code generation). It is difficult to predict the future, but there is a need for greater lifecycle
coverage, and better model integration for systems, software and hardware. This session
discusses model integration, which is needed to better support the complex interchange of
information across multiple engineering disciplines. Domain-specific modeling approaches have
and will promote the use of modeling in various domains, but model integration, and addressing
system engineering integration concerns will be challenging. Tool automation is improving for
models that represent structural and behavioral system aspects. Modeling approaches to
support the system interactions such as timing, scheduling, and resource allocation is still
needed, and this session briefly introduces some of the efforts to support concurrency and
resource models that are being integrated with MDE approaches and tools. Model synthesis is
only useful from models that are free of defects or can satisfy certain types of properties (e.g.,
timing, safety). Therefore, the session concludes by describing a few model analysis examples
where MDE processes cover the entire lifecycle such that verification and validation (V&V) tools
complete the development loop, supporting requirements management, and resulting in the

9 http://www.microsoft.com/soa/products/oslo.aspx

SSCI-2008002-MC Version 1.0 September 2008

 34 of 53

development cycle becoming a living dynamic process with stability and correctness properties
of its own.

This section takes a top-down view from high-level models to modeling tool technologies and
briefly summarizes:

• Model integration and challenges
• Evolution of domain specific modeling language and associated standards
• Specialized model notations and tools
• Support for modeling concurrency
• Model transformation
• Model analysis, model checking and proof of properties
• Model-based testing
• Customer perspective on use of models, and the need for measures that can

provide assurance from release-to-release that a system is working as modeled

Model Integration Challenges
SSCI members build complex systems that are often part of other complex systems of system
such as the Future Combat System reflected by Figure 22. Many of the system elements are
advanced and complex, but they must integrate with other systems that are equally advanced
and evolving to address continually changing environmental situations.

Figure 22. Future Combat System

SSCI-2008002-MC Version 1.0 September 2008

 35 of 53

Electrical and mechanical methods and tools for Computer-Aided Design (CAD) have been
around for many years. Software modeling based on standards such as UML have advanced
significantly in the past few years. There are standards supporting enterprise systems-of-
systems such as DoDAF and MoDAF, and other standards associated with system engineering
such as SysML and MARTE. Integration standards related to work by the OMG, INCOSE, and
AP233, as well as Eclipse for open source development have resulted in many tools to cover
various aspects related to modeling, simulation, code and document generation, and analysis.
As reflected in Figure 23, any SSCI member organization that faces the challenges of
developing these complex systems needs to improve the way they integrate the various
disciplines, models, and tools. The ability to formalize information between groups would
provide better assurance that the system will come together at integration time. In addition,
model integration would support better dependency analysis related to new and changing
requirements. This would allow SSCI member projects more information for cost and schedule
impacts and estimation. There are significant integration challenges, and some related topics
are described in this section.

Software
Engineering

Electrical
Engineering

(Mentor)

Mechanical
Engineering
(Pro/E, Catia)

Systems
Engineering

(SysML, MARTE)

RF
Engineering

(VHDL)

Control Systems
Matlab/Simulink

UML
MagicDraw
Rhapsody

Artisan
TopCased

Operational Context
(DoDAF, MoDAF)

Hardware
Engineering

Future Combat Vehicle

Computer

• Vendor/Tool
• “Standard”

Figure 23. Models, Standards, and Tool Example

Enterprise and System Modeling Languages
A brief introduction of some of the enterprise level and systems modeling languages and
frameworks is provided with pointers to more information. DoDAF10 provides a set of views for
organizing enterprise or systems architecture as reflected in Figure 24. MoDAF11 defines a way
of representing an enterprise architecture which enables stakeholders to focus on specific areas
of interests in the enterprise. MoDAF has been developed from DoDAF and keeps compatibility
with core DoDAF viewpoints in order to facilitate exchange of architectural information as shown
in Figure 25. Tools, for example MagicDraw provides a UML profile for DoDAF and SysML,

10 DoDAF http://www.defenselink.mil/dbt/Training/ACART/DoD_Architecture_Framework.htm
11 MoDAF http://www.modaf.org.uk/

SSCI-2008002-MC Version 1.0 September 2008

 36 of 53

allowing the model development to be integrated. The key challenge is integrating the modeling
concept into the SSCI member organizations.

Operational

Sy
ste

m
s Technical

Operational Concept
Description (OV-1)

Node Connectivity
Description (OV-2)

X YX
Z

XY
Y

Systems Interface
Description (SV-1)

Operational Activity
Model (OV-5)

Information
Exchange Matrix

(OV-3)

Activity to System
Function (SV-5)

System Functionality
Description (SV-4)

Organizational
Relationships
Chart (OV-4)

Systems Data Exchange
Matrix (SV-6)

Operational Activity
Sequence and Timing

Description (OV-6 a/b/c)

N O D E A

L o ca l A re a N e t

Sy stem 1 S y ste m 2

Sy s te m 3 Sy st em 4

S y ste m 5

E X T E R N A L
C O N N E C T IO N
(O U T SID E T H E
N O D E S O F IN T E RE S T)

C O N N EC T IO N
T O N O D E B

C O N N EC T IO N
T O N O D E B

CO N N E C T IO N
TO N O D E C

T wo -W ay
C om m un icati on s
L in ks

O n e-W ay
C om m un ica ti on s
L ink

Systems Communications
Description (SV-2)

System - System
Matrix (SV-3)

Systems Technology
Forecast (SV-9)

Standards Technology
Forecast (TV-2)

Technical Architecture
Profile (TV-1)

Systems Performance
Parameters Matrix (SV-7)

••
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--

•
•
•

Logical Data
Model (OV-7)

Systems Functionality
Sequence and Timing

Description (SV-10 a/b/c)

Systems Evolution
Description (SV-8)

Physical Schema
SV-11

A B C
T1
T2
T3

NODES
TIME

A B C
T1
T2
T3

NODES
TIME

Operational

Sy
ste

m
s Technical

Operational Concept
Description (OV-1)

Node Connectivity
Description (OV-2)

X YX
Z

XY
Y

Systems Interface
Description (SV-1)

X YX
Z

XY
Y
X YX

Z

XY
Y

Systems Interface
Description (SV-1)

Operational Activity
Model (OV-5)

Information
Exchange Matrix

(OV-3)

Activity to System
Function (SV-5)

Activity to System
Function (SV-5)

System Functionality
Description (SV-4)

Organizational
Relationships
Chart (OV-4)

Organizational
Relationships
Chart (OV-4)

Systems Data Exchange
Matrix (SV-6)

Operational Activity
Sequence and Timing

Description (OV-6 a/b/c)

N O D E A

L o ca l A re a N e t

Sy stem 1 S y ste m 2

Sy s te m 3 Sy st em 4

S y ste m 5

E X T E R N A L
C O N N E C T IO N
(O U T SID E T H E
N O D E S O F IN T E RE S T)

C O N N EC T IO N
T O N O D E B

C O N N EC T IO N
T O N O D E B

CO N N E C T IO N
TO N O D E C

T wo -W ay
C om m un icati on s
L in ks

O n e-W ay
C om m un ica ti on s
L ink

Systems Communications
Description (SV-2)

System - System
Matrix (SV-3)

Systems Technology
Forecast (SV-9)

Standards Technology
Forecast (TV-2)

Technical Architecture
Profile (TV-1)

Systems Performance
Parameters Matrix (SV-7)

••
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--

•
•
•

••
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--

•
•
•

•
•
•

Logical Data
Model (OV-7)

Systems Functionality
Sequence and Timing

Description (SV-10 a/b/c)

Systems Evolution
Description (SV-8)

Physical Schema
SV-11

A B C
T1
T2
T3

NODES
TIME

A B C
T1
T2
T3

NODES
TIME

Figure 24. Department of Defense Architecture Framework Views Coverage

SSCI-2008002-MC Version 1.0 September 2008

 37 of 53

Figure 25. UK Ministry of Defence Architectural Framework

SysML12 is a graphical modeling language in response to the UML for Systems Engineering
RFP developed by the OMG, INCOSE, and AP233. SysML extends UML using diagrams that
support structural and behavioral views, and has requirement and parametric diagrams as
shown in Figure 26. SysML supports specification, analysis, design, verification and validation of
systems that include hardware, software, data, personnel, procedures, and facilities. It supports
model and data interchange via XML Metadata Interchange (XMI) and the evolving AP233
standard. AP23313 is an ISO standard specifying communications pipeline between systems
engineering tools and databases. The details of AP233 are important to model integration, but
beyond the scope of the Webinar series and this paper. The OMG provides the latest
information on SysML14.

12 SysML Overview and Tutorial – see http://www.omgsysml.org/INCOSE-2008-OMGSysML-Tutorial-
Final-reva.pdf
13 AP233 - http://www.ap233.org/
14 SysML standard and documentation - http://www.omgsysml.org/

SSCI-2008002-MC Version 1.0 September 2008

 38 of 53

interactioninteraction
state
machine
state
machine

activity/
function
activity/
function

definitiondefinition

1. Structure 2. Behavior

3. Requirements 4. Parametrics

useuse

Figure 26. Pillars of SysML

Model Integration Steps
Like any system, for example a house, it’s difficult to add one aspect of a home’s functionality
such as plumbing, without considering the location of the electric wiring, switches and walls, and
this is true in the integration of models. As summarized in Figure 27, Joseph Sifakis, a co-
winner of the 2007 Turning award stated that we need a holistic approach to integrate the
essential domains, not simply extend hardware and software. This particular statement is based
on embedded systems where there are significant integration challenges related to both
software and hardware. Although the emphasis is on correctness-by-construction, in a world
where hardware can fail simply by breaking, the demands on software that can support
diagnosability, adaptivity in order to reconfigure the system to support some type of survivability
demands more information about the system itself. These are models of the system resources
and concurrency to address formal models of distributed processes that can support a
reconfiguration effort.

SSCI-2008002-MC Version 1.0 September 2008

 39 of 53

Figure 27. Embedded System Design Challenge

Representation and Tailoring of Models for Domain-Specific Uses
Modeling and Analysis of Real Time and Embedded System15 (MARTE) is the first attempt at
UML for real-time engineers like SysML was the first attempt at UML for system engineers. It
addresses key elements to support real-time system details such as time, resources and
scheduling. MARTE is attempting to support models for time that consider the concept that
system time is not equivalent to physical time (e.g., two systems could have clocks that are not
synchronized). MARTE also defines concepts for software and hardware resources as reflected
in the example shown in Figure 28. There is significant work to do to provide better tool
integration support and there is participation by most of the major commercial tool and service
companies. In addition there are open source tools that are available through OpenEmbeDD
platform discussed in Session 3 and represented in Figure 17.

15 See http://www.omgmarte.org/Specification.htm for more details and presentation at this site identify
tool vendor involvement.

SSCI-2008002-MC Version 1.0 September 2008

 40 of 53

Figure 28. MARTE Resource Specification of Non Functional Property

Model Representations for Concurrency
The concept of concurrency is required to support distributed and parallel systems which are
much more prevalent today. Developing the control for distributed systems has been the topic of
research for many years. To align with the needs reflected by Sifakis’ challenge shown in Figure
27 the only way to obtain highly dependable16 systems is to develop it to be complete and
correct or to be adaptable in the face of failure. Considering that hardware can break, especially
when exposed to hostile environments such as the Future Combat System, it is essential to
develop approaches for adaptability and reconfigurability. However, adaptation involves
concurrency in that one or more processes must be able to monitor the system for failures and
be able to modify the system processes to reconfigure and continue with some aspects of the
overall system functionality.

Professor Edward Lee (UC Berkeley) has been working on models of concurrency for many
years, and his work on the Ptolemy II project studies modeling, simulation, and design of
concurrent, real-time and embedded systems. Lee points out that there are some potential flaws
in the concept of threads17, which are often used to support concurrency. Not all threads are
problematic, but because threads can share memory there can be undesirable consequences
such as deadlock. The Ptolemy II project focuses on assembly of concurrent components. The

16 Dependability is a collective term subsuming the notions of reliability, availability, safety, confidentiality,
integrity, maintainability, and security [Laprie 1984].
17 The Problem with Threads, http://www.eecs.berkeley.edu/Pubs/TechRpts/2006/EECS-2006-1.html.
See http://www.researchchannel.org/prog/displayevent.aspx?rID=9488&fID=2501.

SSCI-2008002-MC Version 1.0 September 2008

 41 of 53

underlying principle is to use well-defined models of computation that govern the interactions
between components, and attempting to deal with the use of heterogeneous mixtures of models
of computation. Ptolemy II includes modeling tools that focus on the concurrency aspects of a
system. These tools are available for download, and there are efforts underway to integrate
these tools with other tools to continue to extend tool chains to address concurrency issues.

As standards evolve, such as MARTE, tools continue to evolve too. For example, there are
other tools that are part of OpenEmbeDD that provide time-oriented model analysis. Two
examples include:

• CCSL is Clock Constraint Specification Language provides visual tree of parsed
model clocks

• Polychrony environment based on synchronous multi-clocked model of
computation with model checker

Model Checking

Model checkers can also support time-based analysis. Model checking is the process of
checking whether a given structure is a model of a given logical formula. Model checkers can
check to determine if a model satisfies certain properties (e.g., timing constraints). For example,
finding errors such as data-races, deadlocks, livelocks in multithreaded software by exploration
of a thread. The concept is general and applies to all kinds of logic, although it has been used
more for hardware than software. SPIN is a well-known general tool for verifying the correctness
of distributed software, but there are many other examples too. As discussed in the next
section, model transformation is often required to pull different model views together to leverage
tool chains.

Model Transformation
This section discusses other tools that may need or perform model transformations. The
challenge with tool chains is that often one tool does not use or produce all the needed
information for upstream, or downstream tools. The concept of transformation is not new,
although other words may have been used to describe a tool’s function in the past such as
compilation or translation. Traditionally, the tools provided a text-to-text transformation. For
example machine code from assembly to higher language forms such as Fortran, C, Java,
including domain specific language SQL, and Prolog have been ongoing for many years. More
general forms such as Extensible Stylesheet Language Family (XSL) Transformation (XSLT)
transform XML documents into other XML documents.

Tools now support model-to-model, model-to-text, or text-to-model transformations. Model
transformations are needed because information is not necessarily in one model.
Representations that are suitable for simulation or code generation are often not directly usable
to support analysis or verification. For example, consider the UML example shown in Figure 29.
If the goal is to produce code, then there is a need for structural information and behavior. UML
class diagrams provide structural information that maps directly to code as shown in the
example in Figure 16, but this is not sufficient for code generation. UML behavior can be
provided in state machines, sequence diagrams, activity diagrams or action specification such
as that provide in xUML. Each of these individual aspects of behavior might not be sufficient for
code generation. For example, state machines be associated with a class diagram to specify the
lifecycle of an object, but that does not necessarily describe the application which requires a
sequence diagram to specify the interactions between objects.

SSCI-2008002-MC Version 1.0 September 2008

 42 of 53

Figure 29. Models Transformation Required for Transforming Different Representations

The OMG standard QVT (Query/View/Transformation) is another MDA-related standard. From a
simplistic point of view the concept of model transformation involves converting a model A
conforming to metamodel A into a model B conforming to metamodel B as shown in Figure 30.

Metamodel A

Transformation

Model A

Metamodel B

Model B

Conforms to Conforms to

Define transformation (rules)

Apply transformation

Metamodel A

Transformation

Model A

Metamodel B

Model B

Conforms to Conforms to

Define transformation (rules)

Apply transformation

Figure 30. Simply View of Model Transformation Concept

Currently tools exist that are compliant with the OMG standard including the following non-
exhaustive list:

• Borland Together is a component in the M2M Eclipse project
• SmartQVT an Eclipse open source implementation of the QVT-Operational

language
• Eclipse M2M open source implementation of QVT operational

There are other transformation approaches that are not compliant with the OMG standard, for
example the ATLAS Transformation Language (ATL)18 was inspired by the OMG QVT standard
and builds upon the OCL formalism. It is a hybrid language providing a mix of declarative and
imperative constructs, and available as part of the OpenEmbeDD toolset making it easily
available for experimentation and evaluation. openArchitectureWare provides yet another open
source for transformation tools, and there are video examples at www.openarchitectureware.org
that demonstrate the use of model transformation.

18 http://www.eclipse.org/m2m/atl/

SSCI-2008002-MC Version 1.0 September 2008

 43 of 53

Proof of Properties
Significant focus has been placed on code generation, but model analysis is important to ensure
that models meet certain criteria before being used for code generation. If the model has
defects, then the correctness of the generated code is likely to be incorrect too. Model analysis
can identify defects in a model such as inconsistent constraints or behavioral conditions, and
violation of timing or safety properties.

There are different approaches used to support model analysis. Model checking was briefly
mentioned above, but theorem provers provide another approach to support model analysis.
One of the most basic types of proof involves proof by contradiction. The programming
language Prolog uses this basic mechanism to support computation. For model analysis the
idea is simple:

Assert something is NOT true, then if a solution is found that violates the proof, it
identifies a problem in model

This mechanism can be used for checking that a model satisfies safety properties too, for
example, consider the safety property:

The aircraft radar should not be enabled when there is weight on wheels

If this particular situation is permitted within the model, then this violates the safety property,
because the model analysis has detected certain input conditions that would potentially allow a
person on the ground near the aircraft to be “radiated” while the aircraft has weight on wheels
(i.e., is on the ground). Using a proof mechanism, an assertion can be made stating that radar is
enabled and weight on wheels is true. A theorem prover would determine if there are any paths
through the model that permit this situation, and if so, it would show those paths to the user
performing the analysis, leading hopefully to a correction of the model.

A similar approach can be used to identify unreachable paths through the system. The basic
process applies the general question:

Can a function or path within a model be reached? Or, are there paths to functions that
cannot be reached?

This type of check can be automated, although model transformations are generally required to
transform the model into a form that can be processed by theorem provers. Consider the simple
example shown in Figure 31. Assume that there are three variable:

x: Integer with domain from 0 to 10
y: Integer with domain from 0 to 10
z: Integer with domain from 0 to 10

If there is a requirement that specifies:

z = 0 when
 x < 3 AND
 y < 4 AND
 x + y > 7

then
 maximum value for x is 2
 maximum value for y is 3

SSCI-2008002-MC Version 1.0 September 2008

 44 of 53

 minimum value for x + y is 8

The region represented by the intersection of x & y does not overlap the constrained region
defined by x + y > 7. The constraint expression is contradictory and cannot be satisfied,
because the variable z will never be assigned a value of 0 through this requirement. Thus, the
model has a defect. Real-world problems typically include complex constraints that span many
modules or components of an application. In these situations it can be difficult to isolate these
types of errors through manual processes. Automated model analysis provides a tool for
locating these errors. The Session 4 Webinar slides provide a detailed set of slides that
summarize a similar situation that is briefly explained below.

x

(10,10)

(0,0)

y

x + y > 7x + y > 7

Constraint Key

x < 3x < 3

y < 4y < 4

x & y intersectionx & y intersection

Figure 31. Inconsistent Constraints

The Simulink model shown in Figure 32 has a seeded defect to illustrate the model defect
identification and tool chain traceability links from a model report to the model. The example
includes four related Simulink subsystems. The highest-level subsystem,
hierarchical_root references child_yz, and parent_xy, each with two threads.
Parent_xy references child_xy, which also has two threads. As shown in Figure 32, the
defect exists because there is no combination of threads through the lower-level subsystems
that permit both x and z to be greater than zero when the output (i.e., assignment) of
hierarchical_root must be TRUE. The model child_2_xy requires y <= 0 when x > 0,
but child_2_yz requires y > 0 when z > 0. Thus, a contradiction exists between the logic of
hierarchical_root and logic across two dependent subsystems.

SSCI-2008002-MC Version 1.0 September 2008

 45 of 53

Figure 32. Model Defect Simulink Example

A model transformation from Simulink into T-VEC Vector Generation System (VGS) is
performed to expand the model threads shown graphically in Simulink into analyzable paths as
shown in Figure 33. VGS is general purpose tool supporting model analysis and test generation.
There are three different, but related model transformation mechanisms that can convert
graphical or textual models characterizing requirement, design and application properties (e.g.,
safety), based on representations such as decision tables, state machines, control system, and
code, into a hierarchical form that mirrors the representation of the Simulink subsystems. The
underlying modeling language provides support for an extensive set of mathematical operators
(e.g., trigonometric, intrinsic, integrators, quantization, matrix) that extend standard arithmetic
operators to specify functional behavior supporting various applications domains. Other VGS
components include the test vector generator that integrates with a test driver generator to
produce test drivers that automate test execution for most any language and test environment
with automated test results analysis.

SSCI-2008002-MC Version 1.0 September 2008

 46 of 53

Model
Analysis

Test
Generator

Test
Driver

Generator
Application

Test
Results
Analysis

Expected Outputs and Properties

Actual
Outputs

DCP 1
DCP 2

…
DCP k

DCP 1
DCP 2

…
DCP j

Grandparent
Subsystem

DCP 1
DCP 2

…
DCP i

Low-Level Representation

Child Subsystem
Parent Subsystem

Design
Model

Requirement
Model

Application
Critical

Properties

Simulink Tester

Simulink/
Stateflow
Models

T-VEC
Tabular
Modeler
(TTM)

Assertions

High-Level Representation
T-VEC Project composed of Subsystems in Standard Forum

DCP: Domain Convergence Path
Figure 33. Simulink to T-VEC VGS Model Transformation of Structure and Behavior

The traceability links from the VGS status and error reports link to the likely source of the model
error as shown in Figure 32. The status report provides a summary for each subsystem,
including the number of Domain Convergence Paths (DCSs) derived during the model
transformation process. The summary report provides the number of test vectors, and the
number of model coverage errors. Hyperlinks from the project status report link to other reports
including the model defect error report that is produced for each DCP that has a defect. A
hyperlink from the model error reports traces back to the Simulink model construct that is the
likely source of the problem.

SSCI-2008002-MC Version 1.0 September 2008

 47 of 53

Failure Analysis
All inputs to AND gate must be
TRUE
• Requires x > 0, z > 0
• Requires h_child_2_xy and

h_child_2_yz be TRUE,
which requires y <= 0

• Resulting in contradiction between
top level system logic and logic
across 2 subsystems

Figure 34. Model Coverage Results and Traceability Links

The model analysis capability also supports proof of properties (e.g., safety). Model assertions
representing safety properties can be specified external to the model, and during the test
generation process, if test vectors are generated from a safety property assertion that is
associated with a model, the test vector identifies a DCP thread through the model, where the
safety property is violated.

Other checks such as mathematical errors or potential errors (e.g. division by a domain that
spans zero) are flagged as being a potential divide-by-zero hazard, or range overflow or
underflow, where variables of the model have values outside the specified bounds of the type of
that variable. The error reports generated for these errors link back to the model source.

Model-Based Testing
The process efficiencies derived from fully automated model-based testing can provide
significant cost reductions especially as programs move from initial development and
deployment to evolution and maintenance, however there are significant challenges due
primarily to the completeness of the models and the ability to support model transformations
that can leverage tool chains to support the test automation. Some of the key limitations result
from:

• Lack of formalized behavior, which was pointed out as an issue for code
generation too, for example – even if a state machine is provided for each class,

SSCI-2008002-MC Version 1.0 September 2008

 48 of 53

the constraint and actions associated with each state transition must be formally
defined

• Lack of formalized mapping between the model variables and implementation
variables to support automated test execution and results analysis

• Determining test inputs sets that can cover the threads of a model – often the
complexity of the constraints can make the determination of inputs value difficult
to determine

• Determination of the expected output

As shown in Figure 33, VGS provides automated test vector generation (i.e., inputs and
expected outputs) and test driver generation to automate test execution and results analysis. It
does this as a side-effect of performing the model analysis. Once VGS proves that a set of
constraints from the model is satisfiable, test values for the inputs are selected from the
boundary values, which are often most effective at finding potential faults in manually produced
or automatically generated code. The expected outputs are computed internally to VGS based
on the computation derived from the model transformation using the input values selected for
test cases.

Model and Modeling Tool Evolution
The pace of advancement of modeling tools has increased over the past few years. Standards
have helped establish a basis for modeling products, and open source efforts such as the
Eclipse Modeling Project have provided a quickly evolving infrastructure for research and
development of tool chains, while providing greater availability for evaluation, experimentation,
and extension. However, users of the tools must know how different tool versions can impact
evolving systems that SSCI members produce. Members must know that the system is
operating correctly when new modeling types and tools are used. Modeling tools and the
associated tool chains are more complex than the compilers that are used to produce code.
SSCI customers are interested in the same question and will be demanding more information as
they perform oversight of projects.

For example, consider Figure 35 that was taken from an SSCI training course that is being
given to a NASA organization that is overseeing model-based tool usage on their programs. The
NASA organizations do not necessarily develop models, but they want to have the assurance
that the resulting system operates correctly. This involves several different points of view that
are shown using the model analysis results shown in Figure 34. The oversight process, which
could be used by a quality assurance organization too, is reflected in the flow chart in Figure 35:

1. Models should be free of defects

2. Generated tests should be executed against code that is instrumented to ensure that all
paths through the code have been tested. Tools such as LDRA Testbed are used by
SSCI members to support this function.

3. All test cases should pass (i.e., actual outputs should match expected outputs within
numerical tolerances)

4. All test cases should be executed against un-instrumented code to ensure that
instrumentation had no impact on the test execution results. This is the code that will be
deployed in the target system.

SSCI-2008002-MC Version 1.0 September 2008

 49 of 53

5. Code defects should be analyzed to determine if the code or model was incorrect

Generate
tests

Model

Code

1) Model
defect?yes

no

Test
instrumented

code
2) Meets test
coverage?

Test
code

yes3) All tests
pass?

no

yes
4) All tests

pass?
yes

Success

5) Code
defect?

yes no

no

Generate
tests

ModelModel

CodeCode

1) Model
defect?yes

no

Test
instrumented

code
2) Meets test
coverage?

Test
code

yes3) All tests
pass?

no

yes
4) All tests

pass?
yes

Success

5) Code
defect?

yes no

no

Example

Figure 35. Model-Based Measures

Part of the model-based adoption process requires additional effort to follow a few additional
guidelines related to the use of modeling tools that are evolving much more quickly than
traditional compilers. An approach similar to the oversight role described above could leverage
model-based test automation in making sure that model evolution and new tool usage is
predictable and dependable. Minimally projects should put processes in place to:

• Create baseline models for re-validating tool functionality from release-to-release

- Testing could be used to identify unexpected changes in the model

- Performing automated differencing of the generated artifacts is also a possibility
• Update and maintain the baseline models with each new tool version
• Version control tools to ensure deliverables are reproducible from source artifacts

maintained under configuration control

Conclusion
This paper and associated Webinar series has identified the types of models that can be used
to support lifecycle activities so that members can better understand what they should invest in
to achieve the immediate cost saving or long-term benefits. The focus attempts to identify and
provide realistic expectation on the information that can be derived from models and associated
modeling tools that can contribute to the lifecycle activities including development, verification,

SSCI-2008002-MC Version 1.0 September 2008

 50 of 53

evolution, maintenance and management of the software systems that are critical to SSCI
members.

SSCI member organization should determine model-based technology objectives by using pilot
project to assess technology and method alignment for their organization and programs. They
should use a modeling maturity model concept to consider both ROI and key practices changes
while making technology adoption decisions. As shown in Table 2, ROI is not necessarily the
only factor for considering MDE adoption, because structuring of developmental practices
provides longer-term benefits that can lead to formalizing organizational knowledge.

Table 2. Model Adoption Benefits and Tradeoffs

Levels Goals/Approach Benefits Comments
1 Models not used. The risk is too high.

2 Opportunistic use of models.

Increased awareness of modeling practices
and terminology, potentially beneficial in
future programs.

ROI should not be expected, but there is
potential for increasing maturity of
organization. Need to understand phase-in
to legacy program, or adopt only on new
programs.

3

Models used for guiding
implementation and production of
documentation. Code frameworks may
be generated, but detailed logic
created by hand.

Potential reduction in cost of documentation;
training of people and acquisition and
mangement of tools, and understanding
modeling.

Expected ROI should be minimal, but
process viewed as stepping stone for
organization. Focus on modeling
standards, model and project organization,
model integration, and CM.

4

Separation of business, domain-
specific models from platform-specific
models, and models used to produce
the target systems.

Organization domain knowledge in models is
established, with standarized ways of
managing and measuring projects.
Separation of domain models from platform
details, and significant software development
done automatically through models.

The spectrum for level four could be large
based on the type of system and potential
targets.

5

Domain-specific and business models
separated from platform; all models
transformed to executable systems.

All intellectual knowledge and properties of
the organization captured, reused and
extended.

Pilot project are the time when organizations should establish process guidelines, methods and
standards, some of which are summarized in Session 2 of this paper, as well as take into
consideration proposal impacts, cost, schedule, and training.

Many modeling tools are evolving to address evolving modeling standards, but there are
significant model integration challenges. Organization should understand how different tools can
cover the lifecycle and ensure that the specific tools align with the processes and capabilities of
the organization.

Terms and Acronyms
This section provides a list of some of the terms used throughout the paper.

AADL Architecture Analysis & Design Language

AP233 Application Protocol 233

ATL ATLAS Transformation Language

BNF Backus Naur Form

SSCI-2008002-MC Version 1.0 September 2008

 51 of 53

BPML Business Process Modeling Language

CAD Computer-Aided Design

CASE Computer-Aided Software Engineering

CDR Critical Design Review

CMM Capability Maturity Model

CMMI Capability Maturity Model Integration

CORBA Common Object Requesting Broker Architecture

CWM Common Warehouse Metamodel

DBMS Database Management System

DCP Domain Convergence Path

DoDAF Depart of Defense Architectural Framework

DSL Domain Specific Languages

EJB Enterprise JavaBeans

Erwin Data modeling tool produced by Computer Associates

IBM International Business Machines

ICD Interface Control Document

INCOSE International Council on Systems Engineering

IPR Integration Problem Report

IT Information Technology

Linux An operating system created by Linus Torvalds

MARTE Modeling and Analysis of Real Time Embedded systems

MATRIXx Product family for model-based control system design produced by
National Instruments

MBT Model Based Testing

MDA® Model Driven Architecture®

MDD™ Model Driven Development

MDE Model Driven Engineering

MDSD Model Driven Software Development

MDSE Model Driven Software Engineering

MIC Model Integrated Computing

MMM Modeling Maturity Model

MoDAF United Kingdom Ministry of Defence Architectural Framework

MOF Meta Object Facility

MVS Multiple Virtual Storage

NASA National Aeronautics and Space Administration

SSCI-2008002-MC Version 1.0 September 2008

 52 of 53

OCL Object Constraint Language

OMG Object Management Group

OO Object oriented

PDR Preliminary Design Review

PIM Platform Independent Model

PSM Platform Specific Model

RFP Request for Proposal

ROI Return On Investment

SSCI Systems and Software Consortium

Simulink/Stateflow Product family for model-based control system produced by The
Mathworks

SCR Software Cost Reduction

SDD Software Design Document

SOAP A protocol for exchanging XML-based messages – originally stood for
Simple Object Access Protocol

Software Factory Term used by Microsoft

SRS Software Requirement Specification

SysML System Modeling Language

UML Unified Modeling Language

XMI XML Metadata Interchange

XML eXtensible Markup Language

XSLT eXtensible Stylesheet Language family (XSL) Transformation

xUML Executable UML

Unix An operating system with trademark held by the Open Group

VHDL Verilog Hardware Description Language

VGS T-VEC Vector Generation System

VxWorks Operating system designed for embedded systems and owned by
WindRiver

SSCI-2008002-MC Version 1.0 September 2008

 53 of 53

About the Systems and Software Consortium, Inc.
The Systems and Software Consortium, Inc. (SSCI) is a nonprofit partnership of market leaders,
government agencies, and academic affiliates. As a consortium, SSCI enables industry and
government to co-invest in the development of systems and software processes and capabilities
that improve business performance. Members also have access to a team of technical experts
whose collective knowledge of best practices and lessons learned gives SSCI the unique
opportunity to offer practical advice and proven solutions.

The Consortium is interested in your comments and
suggestions. Please send your thoughts and insights to

ask-ssci@systemsandsoftware.org.

For more information about the Systems and Software
Consortium, please visit

www.systemsandsoftware.org

