
Copyright © 2008, Systems and Software Consortium, Inc. All rights reserved. This document is proprietary property of the Systems and
Software Consortium, Inc. The contents of this document shall be kept confidential pursuant to the terms of the Membership Rules, as amended
from time to time, of the Systems and Software Consortium, Inc. This document shall only be disseminated in accordance with the terms and
conditions of those Rules. All complete or partial copies of this document must contain a copy of this statement.

Applying the Test Automation
Framework With Use Cases and
the Unified Modeling Language

 Rich McCabe

Systems and Software Consortium, Inc.

Mark Blackburn
Systems and Software Consortium, Inc.

Abstract Contents
Currently, there is great interest in the use case
technique and the Unified Modeling Language
(UML). This paper explains how use cases and
UML models are somewhat limited in the
information they provide to testers. Any effective set
of tests represents a detailed understanding of the
requirements of the unit under test, as well as the
interfaces provided to the test drivers. Although use
cases and UML diagrams provide many important
clues to the tester, they typically lack much vital
information, especially in support of rigorous and
cost-effective testing, as accomplished with the
Software Productivity Consortium’s Test
Automation Framework (TAF). Given these
limitations, the focus is on how best to employ TAF
when working with UML artifacts.

This is the first Consortium paper addressing the
issue of using UML to support test automation with
TAF. Based on member requests, this paper may
be extended to include more technical details
explaining how typical UML artifacts may be used
to provide interface information.

Introduction.............................. 1

TAF ... 3

Building a TAF Verification
Model .. 5

Conclusions............................. 12

References 13

Introduction

Why This Paper Is Worth Reading

This paper explains how to employ use cases and Unified Modeling Language (UML) artifacts
with the Software Productivity Consortium’s Test Automation Framework (TAF) in
system/software development. In particular, the discussion covers use cases and use case

SPC-2002048-MC Version 1.0 January 2003

 2 of 15

diagrams, interaction diagrams, class diagrams, and statechart diagrams, as well as describing
how they are related to system testing, integration testing, and unit testing.

Reliable, safe, secure, and correct software is of greater concern than in the past as systems
grow ever more complex. The strategy for system verification and validation is a crucial aspect
in addressing these concerns. The cost of testing is increasing as the size and complexity of
systems increase. TAF has been demonstrated to support rigorous requirements analysis and
automated testing in a timely, cost-effective manner. TAF reduces defects, risk, and testing
schedule and cost—up to 90 % of schedule (Software Productivity Consortium 2000) and 40 to
60 % of test/verification costs (Kelly et al. 2001; Safford 2000).

UML is increasingly used as the notation of choice in software development and is featured in
many tools and methods, such as the Consortium’s Object-Oriented Approach to Software-
Intensive Systems (OOASIS) method. Despite widespread use of UML, there are frequent
misunderstandings in how to employ it for testing, especially automated testing as supported by
TAF. Binder (2000), in his comprehensive summary of the application of UML to testing, points
out the limitations of UML in testing: “UML does not provide explicit support for combinational
logic and domain definition, which are essential for test design. As a practical matter, the
models (whether using UML or not) produced for many systems need much work before test
cases can be developed from them.” This paper deals with the pragmatics of applying TAF
using UML artifacts given this typical situation.

Scope
The focus of this paper is on system and integration testing. As Binder (2000) notes, there are
at least three potential levels of testing in a software-intensive system:

• System test involves a complete integrated application, where the tests focus on
capabilities or characteristics that are present only with the entire system.

• Integration test involves a complete system or subsystem where tests exercise
interfaces among units within the specified scope to demonstrate that the units are
operable collectively. Test strategies for large systems may involve independent testing
of its subsystems or other collections of system components short of the whole system.

• Unit test typically is performed by the developer on units of functionality too small to be
individually specified by system designers and verified by independent test groups.

Although TAF has been used for unit testing, it is not addressed here.

This paper provides a brief overview of TAF and discusses how various artifacts may be
mapped into TAF verification models to support automated analysis and test generation. In
addition, TAF model development from use cases is illustrated with an example.

The reader is presumed to have some familiarity with the following:

• UML and, in particular, use case diagrams, interaction diagrams, and statechart
diagrams (the current standard is UML 1.4)

• Object-oriented (OO) software and related concepts (although objects and classes are
mentioned only in passing)

See the section For More Information for resource suggestions on these topics.

SPC-2002048-MC Version 1.0 January 2003

 3 of 15

TAF
TAF is a method and associated toolset to support model development, model analysis, and
model-based test automation. TAF supports modeling methods that focus on representing
requirements, like the Software Cost Reduction (SCR) method, as well as approaches that
focus on modeling both requirements and design (as in The MathWorks’ Simulink®). TAF
integrates various government and commercially available model development and test
generation tools to support defect prevention and automated testing of systems and software.
Unfortunately, as of this writing, UML is not defined with sufficient semantics to enable full
analysis and automated test generation (Fontaine and Blackburn 1998).

Currently the T-VEC® Test Vector Generation System is the TAF toolset used for test
generation. In addition, T-VEC supports test driver generation, requirement test coverage
analysis, and test result checking and reporting. Through model translation, requirement-based
or design-based models are converted into T-VEC test specifications, from which T-VEC
derives test vectors. These test vectors include test inputs and expected test outputs, as well as
model-to-test traceability information. T-VEC’s test driver generation capability supports
preparing the test vectors for execution in the test environment.

The most typical application of TAF is a method based on interface-driven requirements
modeling, which is applicable to most systems, including those developed with UML and OO.
With this approach, test engineers work in parallel with developers to stabilize interfaces, refine
requirements, and build models to support iterative testing and development. The following
outlines the process, as depicted in Figure 1:

1. Working from whatever requirements artifacts are available, testers create a rigorous
verification model1 in a table-based format2 using a tool based on the SCR method, such
as the SCRtool or T-VEC Tabular Modeler (TTM). Simplistically, each table represents
an output, specifying the relationship between input values and resulting output values.
T-VEC automatically checks for inconsistencies in the model. The tester interacts with
the requirements engineers to validate the model as a complete and correct
interpretation of the requirements.

2. The tester maps the variables (inputs and outputs) of the verification model to the interfaces of the
system. The nature of these interfaces depends on the level of testing performed. At the system
level, the interfaces may include graphical user interface widgets, database application
programming interfaces (APIs), or hardware interfaces. At the lowest level they can include class
interfaces or library APIs. The tester uses these mappings to build test driver templates to support
automated test driver generation. The tester works with the designers to ensure the validity of the
mappings from model to implementation.

1 “… a verification model specifies behavioral requirements in terms of the interfaces for the system
under test. This is in contrast to a “pure” requirements model, which specifies the requirements in terms of
logical entities representing the environment of the system under test. Verification modeling from the
interfaces is analogous to the way a test engineer develops tests in terms of the specific interfaces of the
system under test.” (Blackburn et al. 2000)

2 Although analysts and designers commonly develop models based on state machines or other
notations, testers apparently find it easier to learn and develop requirements for test in the form of tables.
See Blackburn et al. (2001) and Kelly et al. (2001) for more information.

SPC-2002048-MC Version 1.0 January 2003

 4 of 15

3. The T-VEC tool generates an optimal set of test vectors by analyzing the input space.
Based on the constraints defined in the model, it identifies boundary conditions most
likely to expose defects in the system response. T-VEC generates the corresponding
test drivers (using the test driver templates) and executes the test drivers in the target or
host environment. The test drivers typically are designed as an automated test script that
sets up the test inputs enumerated in each test vector, invokes the unit under test, and
captures the results.

4. Finally, T-VEC analyzes the test results. It compares the actual test results to the
expected results and highlights any discrepancies in a summary report.

Global init;
Forall tests
init target;
set inputs;
execute SUT;
get outputs;
store output;

endforall

Test Vector
Generator

Test Driver
Generator

TAF Model
Translator

Test Driver
Templates

Model

Test Environment

Test scripts
generated from test

templates and
generated tests,
executed in test
environment to

drive the
unit under test

Tester builds model
to capture required

behavior

Test driver templates
define a pattern for

generating test scripts

T-VEC uses model
to heuristically
generate tests

Tester

Requirements
Analyst

Designer

Design
spec

Requirements
specification

Test Result
Analyzer

Test
Analysis

Test results
compared

against
expected
results

Global init;
Forall tests
init target;
set inputs;
execute SUT;
get outputs;
store output;

endforall

Test Vector
Generator

Test Driver
Generator

TAF Model
Translator

Test Driver
Templates

Model

Test Environment

Test scripts
generated from test

templates and
generated tests,
executed in test
environment to

drive the
unit under test

Tester builds model
to capture required

behavior

Test driver templates
define a pattern for

generating test scripts

T-VEC uses model
to heuristically
generate tests

Tester

Requirements
Analyst

Designer

Design
spec

Requirements
specification

Test Result
Analyzer

Test
Analysis

Test results
compared

against
expected
results

Figure 1. Typical TAF Process

What TAF Requires
The key prerequisite for test design, whether done manually or through automated test selection
and generation, is defining the relationships between input and output values. As with any
approach to test design, TAF requires two primary inputs:

• Functional requirements, which describe the required behavior of the unit, component, or
subsystem under test (a requirement specification)

• Interface definitions, which describe the inputs and outputs, their data types and range
information, and the facilities for interacting with the unit under test

The system or software design must permit testers to create valid test driver templates, from
which T-VEC generates working test drivers to run test scripts in the test environment. This
means that interfaces must be available for injecting test inputs (including setting internal state

SPC-2002048-MC Version 1.0 January 2003

 5 of 15

as needed), executing the system under test, and observing the test results. Test scripts act on
behalf of multiple test cases to:

• Initialize the unit under test
• Set inputs and execute the unit
• Retrieve and store the results

Usually some but rarely all information needed to apply TAF is available in use case
documentation and UML artifacts. The next section describes the problems in more detail and
provides some guidance.

Building a TAF Verification Model
The point of testing is to verify that the system or component under test meets its specification
(i.e., requirements). Depending on project conventions and the system under test, various
artifacts are used to represent the specifications. Many projects use various UML artifacts with
other types of models and often precede OO design at the component or subsystem level with
functional analysis and architectural design at the system level. Regardless, this paper deals
with the following artifacts, consistent with its focus on UML:

• Use cases and use case diagrams
• UML statechart diagrams
• UML interaction diagrams
• An abstract class or interface specification (in code or attached to a UML interaction or

class diagram)

Even these artifacts are interpreted and employed variously by different projects. Recognize
also that a given tool, although UML-based, may not support all legal constructs in UML (but
may, on the other hand, offer its own unique extensions to UML, none of which will be
addressed here, of course).

Use Cases and Use Case Diagrams
Use cases are often used to document the highest level of system behavior; however, larger
projects tend to treat subsystems as systems in their own right and consequently may apply the
use case technique recursively to subsystems, subsubsystems, and the like.

Use case diagrams are a UML standard but are no more than a depiction of the gross structure
of the behaviors demanded of the system. Although they may contain a few clues for the
verification model, they are hardly more than a “table of contents” for the use cases.

The UML standard does not cover use cases. As commonly practiced, use cases are formatted
as structured text. Projects often adopt a common template for use cases. Some of the most
typical sections of a use case include the following:

• Name/goal
• Actors
• Preconditions (and postconditions)
• Main scenario
• Alternate courses

The actors designate the input sources and output sinks for the unit under test. This information
may help to clarify the nature of an input or output that should be included in the verification

SPC-2002048-MC Version 1.0 January 2003

 6 of 15

model. In general, tests should cover system interactions with all actors; thus, the tests will
involve all inputs and outputs.

The preconditions are a strong clue to a system mode or state, sometimes expressed in terms
of one or more use cases that must occur (or execute successfully) before the use case at hand
may even be invoked (e.g., the Recognize Card use case in the example below). In terms of the
verification model, this indicates an input condition that must be set as part of the setup for tests
related to this use case. Sometimes a use case also specifies postconditions, indicating under
what circumstances the execution of the use case results in a change in system state (i.e., a
test output). System states therefore appear as variables in the verification model and are used
as both inputs and outputs. Generally each state is a separate variable (with values “active” and
“not active” or the equivalent), except for states that are logically exclusive (e.g., the system can
only be in one of the following states at any given time: take off, landing, reconnaissance, or
combat).

The main scenario is the primary “trace” or stimulus/response behavior represented by the use
case, often presented as the simplest or most natural scenario in which the system
accomplishes the goal or essential behavior of the use case. The alternate courses are
subsidiary paths that branch off from the main scenario, dealing with more complex success
scenarios or failure cases and handling “unexpected” events. The scenarios are written as a
partially ordered sequence of steps. While not practiced universally, the best technique is to
treat the system as a black box, so that each step is either an input to the system or an external
output from the system. Without black box treatment, use cases begin to resemble UML
interaction diagrams, in that they distinguish the interactions of internal components, but the
tester can still use them as described in the next section by simply ignoring the internal
interactions (i.e., ignoring interactions internal to the unit under test).

The tester, by walking through the use cases, can infer variables of the verification model and
begin to build the model incrementally. Each step represents some input or output, but the
informality of use cases leads to the following difficulties:

• Distinguishing the same variable in multiple steps and across multiple use cases.
The same variable is likely to appear in multiple places but is not necessarily named
consistently. In fact, it may not be named at all, but is only implicit in some action. This is
where reference to the interface specification proves invaluable; however, interaction
with both analyst and designer is also crucial.

• Relating specific ranges of input and output values. Use cases typically do not include
extensive annotations detailing logical and algorithmic relationships among inputs and
outputs. By context, the tester usually may infer that a relationship exists but not the
specific contents of the data. Of course, for some early testing, the detailed values may
not be important (e.g., testing priority is to check that the system successfully transmits a
report to the right destination, not the contents of the report). Rigor usually demands
detail, however, and again the tester will need to refer to the designer as well as the
design specifications.

• Distinguishing state changes within a use case. There is no guarantee that significant
system state changes impacting the expected output will be matched one to one with
use cases. Multiple state changes may occur over the course of a single use case. Such
states may be inferred from the use case, but most likely they will be obvious only to the
analyst or designer. Without a statechart diagram or equivalent information in the
interface specification, the tester is most likely to discover such states during discussions
with analysts or designers to uncover the value relationships among inputs and external
outputs.

SPC-2002048-MC Version 1.0 January 2003

 7 of 15

Without interface specifications to reference, the testers should collaborate with the designers to
identify model variables that map well to the existing system interfaces and/or to establish test-
friendly interfaces. While testers can manage these mappings (from verification model variables
to interface elements) at a single point of change and define them to be arbitrarily complex, the
mappings do not wholly mitigate the risk of a poor model-to-interface match. The tester
achieves best results by working with the designer to ensure that the interface will support a
straightforward mapping between model and interface, as well as facilities to support the other
needs of the test drivers.

Interaction Diagrams
Interaction diagrams are either sequence or collaboration diagrams, but they are semantically
equivalent for the purposes of verification modeling. The interaction diagram depicts objects,
components, and/or subsystems of the system interacting, often to realize a specific use case
(or a particular scenario or trace of a use case).

The tester then would consult interaction diagrams when the unit under test is a component of a
larger system, focusing on this component’s interactions with its siblings. The same component
appears in multiple diagrams, and the tester must peruse all of them in order to identify the
same inputs and outputs within different scenarios. Again, as in the other diagrams, the
specification of those inputs and outputs may be detailed or left vague. Regardless, the tester
requires additional information from the designer and relevant interface specifications, usually
not only for the unit under test but also for the other components interacting with the unit under
test. Interaction diagrams typically do not provide any information relating input to output value
ranges, and neither are system states represented explicitly.

As with use cases, the tester should walk through each interaction diagram. Here the tester
focuses on the unit under test but should absorb the whole diagram to get the context of the
interaction and infer any relevant system state. If the interaction diagram does correspond to a
use case, then the use case can provide clues to pertinent system states, as described in the
earlier section on use cases.

Statechart Diagrams
Statechart diagrams, the UML notation for finite-state machine models, are the UML diagrams
closest to meeting the needs of a verification model, but still lack crucial information. Efforts are
ongoing to augment UML statechart diagrams with an “action language,”3 but this has yet to be
standardized.

Statechart diagrams are somewhat more convenient than use cases in that all the significant
system states are explicitly represented, as well as their relationships to inputs and outputs.
Furthermore, the conciseness of the notation helps the tester peruse the diagram, collecting
inputs and outputs; however, complicated systems still have large, complicated, multilevel
statechart diagrams.

The tester still must recognize and input and output variables as they appear in multiple places
throughout the diagram and map these to actual constructs in the code. In fact, the very
terseness of the diagram may make it more difficult for the tester to infer any missing
information. Statechart diagrams often are inconsistent or silent in identifying inputs and outputs

3 An action language is a formal notation for representing the effects of actions in the context of some
model (for example, a finite-state machine).

SPC-2002048-MC Version 1.0 January 2003

 8 of 15

and their values; an input (or output) may be designated by its value, name/type, or different
things in different places. The analyst’s intent may be more obscure than in a goal-directed use
case.

Interface Specifications
As has been reiterated throughout this paper, interface specifications are crucial to successful
application of TAF, as well as any test design. All software components eventually have an
interface specification, even if it is only the interfaces as defined in the code itself.

UML provides for interface specifications of classes, components, and subsystems. The UML
interface specification is a set of operation signatures, describing the same essentials as any
programming language. Operation signatures minimally provide an actual set of inputs and
outputs, specifying data types for parameters and return values.

While verification model variables must map to these actual inputs and outputs, the mapping is
not necessarily one-to-one. Still, the tester should examine available interfaces closely to
confirm that abstractions seeming to appear in the requirements do exist in the code and that
model variables and state values can in fact be mapped to these interfaces. The interface
specification does not provide all the information the tester needs to produce the verification
model, but it can help guide the tester to ask the right questions from the designer and analyst.

ATM Example
The following simplified example of an automated teller machine (ATM) is used to illustrate
primarily how UML use cases can be mapped to TAF models. The example concludes with
some discussion of the other artifacts.

Figure 2 depicts a use case diagram for the ATM. Admittedly, it shows only a partial and
simplified set of use cases compared to those for a real ATM. Note that the example treats the
bank accounting system as part of the ATM system rather than as an external actor.

Customer

Withdraw
Cash

Transfer
Funds

Recognize
Card

Refill
Reserve

ATM TechnicianCustomerCustomer

Withdraw
Cash

Transfer
Funds

Recognize
Card

Refill
Reserve

ATM TechnicianATM Technician

Figure 2. Use Case Diagram—ATM Example

To support testing, as discussed earlier, the required behavior must be identified and expressed
in terms of some interface. From a high-level perspective, the use cases denote various broad
behaviors but this is not sufficient for building test cases or models. More detailed information is
required to formalize the interfaces and required behavior.

Use Case
Table 1 specifies a portion of the use case for withdrawal. The portion shown omits a great
many alternate courses that would be present in the complete use case, such as handling
timeouts, the consequences of an invalid personal identification number (PIN), and foreign
language options.

SPC-2002048-MC Version 1.0 January 2003

 9 of 15

Table 1. Withdraw Cash Use Case (Extract)

Name/Goal Withdraw Cash

Actors Customer

Preconditions 1. The Recognize Card use case has completed successfully.

Postconditions 1. Current balance = original balance – dispensed cash – service charge.

2. Cash reserve = original reserve – dispensed cash.

Main scenario 1. Customer requests cash withdrawal.

2. ATM asks Customer for amount.

3. Customer inputs desired amount.

4. ATM dispenses amount of cash requested, card, and receipt.

Alternate courses 2a. Customer card linked to multiple accounts.

2a1. ATM asks Customer to select one account (savings, checking, or
credit) for the transaction.
2a2. Customer selects an account.

2a3. Go to Step 2.

2b. Customer card linked to nonaffiliate account.

2b1. ATM asks whether Customer will accept $2 service charge.
2b2. Customer accepts charge.
2b3. Go to Step 2.

2c. Card linked to credit account.

2c1. ATM asks whether Customer will accept $10 service charge.
2b2. Customer accepts charge.
2b3. Go to Step 2.

4a. Customer requested amount not a multiple of $20.

4a1. ATM asks Customer to enter a multiple of $20.
4a2. Go to Step 3.

4b. ATM has less cash in reserve than requested amount.

(etc.)

This use case provides enough information to begin creating a verification model, albeit at some
risk that the variables of model will not map to system interfaces as ultimately coded (see
discussion at the end of the section Use Cases and Use Case Diagrams).

Verification Model
Analyzing the Withdraw Cash use case (and the other use cases not shown in detail in the
table) suggests a number of abstract input variables to use in the verification model:

• Amount: The amount specified for a withdrawal or transfer
• Balance: The balance of the account prior to the transaction

SPC-2002048-MC Version 1.0 January 2003

 10 of 15

• Cash_reserve: The amount of cash in the ATM machine prior to the transaction
• Institution: The financial institution type: AFFILIATE or NON_AFFILIATE
• Transaction: The type of transaction: WITHDRAWAL, TRANSFER, CREDIT

In addition, the associated data types and domains (i.e., possible range of values in that data
type) may be determined, as presented in Table 2. Again, these variables are somewhat
speculative in that they may not map well to the actual system interfaces as coded.

Table 2. Variables for Withdrawal Use Case

Input Variable Name Data Type Domain

Amount amount_type 0,999999

Balance amount_type 0,999999

Cash_reserve cash_reserve_type 0,10000

Institution institution_type AFFILIATE,NON_AFFILIATE

Transaction transaction_type WITHDRAWAL,TRANSFER,CREDIT

A sample model of one of the withdrawal requirements is represented in Table 3 as a condition
table. A condition table specifies values and constraints for the outputs. The condition table
shown in Table 3 defines the conditions that limit the cash dispensed by the ATM. These
conditions rigorously express those requirements described more informally in the Withdraw
Cash use case.

Table 3. Requirement Model for Cash Dispensed in the Withdrawal Use Case

Assignment Condition

(Amount)

 (Transaction = WITHDRAWAL
 OR Transaction = CREDIT)
 AND (Amount = 20 OR Amount = 40 OR Amount = 60 OR Amount = 80
 OR Amount = 100 OR Amount = 120 OR Amount = 140 OR Amount = 160
 OR Amount = 180 OR Amount = 200 OR Amount = 220 OR Amount = 240
 OR Amount = 260 OR Amount = 280 OR Amount = 300)
 AND (Amount <= Cash_reserve)
 AND (t_funds_available)

(0)

 ((Transaction = WITHDRAWAL
 OR Transaction = CREDIT)
 AND (NOT(Amount = 20 OR Amount = 40 OR Amount = 60
 OR Amount = 80 OR Amount = 100 OR Amount = 120
 OR Amount = 140 OR Amount = 160 OR Amount = 180
 OR Amount = 200 OR Amount = 220 OR Amount = 240
 OR Amount = 260 OR Amount = 280 OR Amount = 300))
 OR (Amount > Cash_reserve)
 OR NOT (t_funds_available))

Note the condition table for withdrawal depends on the term variable t_funds_available, which is
shown in Table 4. In the TTM tool, a term variable can be referenced as part of the constraints
or value calculations of other inputs, terms, or output variables. They reduce the complexity of
the model by simplifying expressions and eliminating redundancies. For example, the condition
table for t_funds_available references term t_service_charge. The condition table for
t_service_charge is shown in Table 5 and defines the value and conditions of the service.

SPC-2002048-MC Version 1.0 January 2003

 11 of 15

Table 4. Requirement Model for Term t_funds_available

Assignment Condition
(TRUE) (Balance - Amount - t_service_charge) >= 0
(FALSE) (Balance - Amount - t_service_charge) < 0

Table 5. Requirement Model for Term t_service_charge

Assignment Condition

2
Institution = NON_AFFILIATE
 AND (Transaction = WITHDRAWAL
 OR Transaction = TRANSFER)

(0)
Institution = AFFILIATE
 AND (Transaction = WITHDRAWAL
 OR Transaction = TRANSFER)

10 Transaction = CREDIT

The T-VEC Test Vector Generation System calculates an optimal set of test vectors based on
all of the condition tables shown earlier. A sample of the generated test vectors is shown in
Table 6. From a total of 60 test vectors, only a portion of the tests are shown in the table.

Table 6. Test Vectors for Withdrawal Use Case

__output Amount Balance Cash_reserve Institution
t_funds_
available
__VAR

t_service_
charge
__VAR

Transaction

1 20 20 22 20 NON_AFFILIATE TRUE 2 WITHDRAWAL
2 20 20 999999 10000 NON_AFFILIATE TRUE 2 WITHDRAWAL
3 40 40 42 40 NON_AFFILIATE TRUE 2 WITHDRAWAL
4 40 40 999999 10000 NON_AFFILIATE TRUE 2 WITHDRAWAL
[Skip rows]
58 280 280 999999 10000 AFFILIATE TRUE 10 CREDIT
59 300 300 310 300 NON_AFFILIATE TRUE 10 CREDIT
60 300 300 999999 10000 AFFILIATE TRUE 10 CREDIT

Other Artifacts

An interaction and/or class diagram will begin to provide the tester with the expected interfaces.
The interaction diagram may expose other system behavior not detailed in (or not apparent in)
the use cases. The tester can improve and expand the initial model shown above based on this
information or deal with minor mismatches by correcting the definitions of model-to-interface
mappings. The following paragraphs discuss a few of the typical problems a tester would
encounter.

The data types of the model variables may be different from those of the corresponding
variables in the system implementation. For instance, the Balance and Amount variables
actually may be typed as decimal values (i.e., dollars and cents).

Some input variables may not map to an actual variable in the code and must be controlled
indirectly. For example, the Institution variable may be best controlled by setting the card
identifier (a variable arising from the Recognize Card use case not explicitly called out in the
example) linked to an account associated with an institution of the desired type. Test drivers
may need to construct preliminary transactions to set the Balance variable correctly during test
setup.

SPC-2002048-MC Version 1.0 January 2003

 12 of 15

The system may implement other model variables as multiple variables or, in the worst case,
demand a reconception of some model variables and the consequent reworking of dependent
condition tables. As a trivial example, the system may store the state of the cash reserve as an
integer representing the number of bills on hand, rather than as a dollar value. Balance may not
be directly accessible; for example, it could be embedded in the receipt as text and is best
checked via indirect means, such as the result of subsequent transactions.

Any statechart diagrams also may serve as both a check and an expansion of the verification
model. They should be concisely and definitively represent system states that could only be
inferred beforehand by examining diverse portions of the use cases or interaction diagrams.
These logical states, however, may not map simply to values stored in the system
implementation. For example, the Card Recognized state, a necessary precondition for the
Withdraw Cash use case, may be represented in the system only by having reached a certain
location in the program where the Institution variable (as well as other variables such as
Card_number and PIN) has been set correctly.

Conclusions
This paper has shown how TAF may be applied successfully by working from use cases and
UML models, although the task is certainly not mechanical or trivial. The tester must do the
mental work of translating less-than-rigorous UML specifications into a rigorous verification
model that maps successfully to the system implementation. The tester requires close
interaction with both analysts and designers to supply crucial information missing from the UML
artifacts.

Future Work
This paper is not a comprehensive treatment of the issues related to applying TAF in OO
development projects. Based on member requests, the Consortium may continue to extend its
explorations in this area to address the following:

• A full tutorial for building TAF models from UML artifacts that illustrates how UML
information can support the definition of interfaces that are critical to the development of
models

• OO design and code techniques to build test driver templates and map verification
model variables to code interfaces

• Employing UML version 2.0 (and succeeding versions) with TAF
• TAF use with particular commercial UML-based modeling tools

Furthermore, similar challenges abound in applying TAF using the artifacts typical of a
functional approach to analysis and design (for example, behavioral diagrams).

For More Information

Members with general questions or comments on any of the topics in this paper or
related topics, or members interested in applying TAF or OO technologies with
Consortium assistance, should contact the authors or their member account director
(see http://www.software.org/pub/keycontacts.asp).

For more on TAF, see the Consortium’s TAF Website at
http://www.software.org/pub/taf/testing.html or contact the authors.

SPC-2002048-MC Version 1.0 January 2003

 13 of 15

For more about the SCR method, see Heitmeyer, Jeffords, and Labaw (1996). In
addition, there are examples of the method on the TAF Website at
http://www.software.org/pub/taf/Reports.html.

OOASIS is the Consortium’s methodology for system/software development; it is an
example of a UML-based approach that fits well with TAF using the techniques
described in this paper. For more information, visit the OOASIS Website4 at
https://www.software.org/membersonly/ooasis/ or contact the authors. For specific
guidance on the use case technique, look to
https://www.software.org/membersonly/OOASIS/tasks/capture_behavioral_requirement
s.asp. Many books cover the use case technique, but Cockburn (2000) is one of the
best.

For a quick overview of UML diagrams, see
https://www.software.org/membersonly/OOASIS/umlreference.asp4. For a more
complete introduction to UML, Fowler and Scott (1999) is a good source. The Object
Management Group (at http://www.omg.org/) is the industry consortium that owns and
updates the UML standard.

For an introduction to OO concepts, consider Page-Jones (2000) as a good choice
among the many available texts.

References
Binder
2000

Testing Object-Oriented Systems—Models, Patterns and Tools. Reading,
Massachusetts: Addison-Wesley.

Blackburn, M.R.,
R.D. Busser, and
A.M. Nauman
2000

Interface-driven Model-Based Test Automation. In Proceedings of
the Software Testing Analysis and Review Conference (STARWEST
2000).

Blackburn, M.R.,
R.D. Busser, and
A.M. Nauman
2001

Removing Requirement Defects and Automating Test. STAREAST,
May 2001.

Cockburn, A.
2000

Writing Effective Use Cases. Reading, Massachusetts: Addison-
Wesley.

Fontaine, J., and
M. R. Blackburn
1998

Automatic Test Generation Support for Object Technologies, SPC-
98068-MC, version 01.00.00. Herndon, Virginia: Software
Productivity Consortium.

Fowler, M., and
K. Scott

UML Distilled, Second Edition: A Brief Guide to the Standard Object
Modeling Language. Reading, Massachusetts: Addison-Wesley.

4 This page requires that you have a member account to gain access, but it is free to all members.
Request an account at https://www.software.org/catalog/welcome_new_member.asp.

SPC-2002048-MC Version 1.0 January 2003

 14 of 15

1999

Heitmeyer, C., R.
Jeffords, and B.
Labaw
 1996

Automated Consistency Checking of Requirements Specifications.
ACM TOSEM 5(3):231-261, 1996. Also available at
http://chacs.nrl.navy.mil/publications/CHACS/1996/1996heitmeyer-
ACM.pdf.

Kelly, V., E. L.
Stafford, M. Siok,
and M. R.
Blackburn
2001

Requirements Testability and Test Automation. Lockheed Martin
Joint Symposium, June 2001.

Page-Jones, M.
2000

Fundamentals of Object-Oriented Design in UML. Reading,
Massachusetts: Addison-Wesley.

Safford, E. L.
2000

Test Automation Framework, State-Based and Signal Flow
Examples. Twelfth Annual Software Technology Conference, 30
April to 5 May 2000.

Software
Productivity
Consortium
2000

Rockwell Pilot Project Technical Note, SPC-2000045-MC, version
1.0. Software Productivity Consortium.

SPC-2002048-MC Version 1.0 January 2003

 15 of 15

About the Systems and Software Consortium, Inc.
The Systems and Software Consortium, Inc. (SSCI) is a nonprofit partnership of market leaders,
government agencies, and academic affiliates. As a consortium, SSCI enables industry and
government to co-invest in the development of systems and software processes and capabilities that
improve business performance. Members also have access to a team of technical experts whose collective
knowledge of best practices and lessons learned gives SSCI the unique opportunity to offer practical
advice and proven solutions.

The Consortium is interested in your comments and suggestions.
Please send your thoughts and insights to ask-

ssci@systemsandsoftware.org.

For more information about the Systems and Software
Consortium, please visit

www.systemsandsoftware.org

