
Systems and Software Consortium | 2214 Rock Hill Road, Herndon, VA 20170-4227

Phone: (703)742-8877 | FAX: (703)742-7200

www.systemsandsoftware.org

SOA Tech Exchange

Paradox: What’s Good About
SOA Is What’s Bad About SOA

(A Technical Perspective)

Prepared By: Mark Blackburn, Ph.D.

Why This Topic?

• Members confirmed that dependability issues are more difficult to

address in SOA efforts than anticipated

– Dependability, including security, reliability, availability, integrity,

confidentiality (and Quality of Service)

– More difficult problem than with more traditional tightly-coupled systems

• Information Week survey of 273 tech pros [Sept, 4, 2006]

– 24% say SOA & Web services projects fell short of expectations

• Of those, 55% say SOA introduced more complexity into IT environments

• 41% say they cost more than expected

– Out of all respondents using SOAs & Web services, just 7% say the

results exceeded expectations

• Presentation discusses some of the technical challenges

– What’s different with SOA (mostly from a Web services perspective)?

– Verification, testing, and monitoring where testing is difficult or costly

– Security

– Recommendations

– Conclusion

Why Should You Care?

$$$
• SOA introduces a new dimension with potentially

unanticipated effort/cost

• Liability costs

– Functioning improperly

– Not being delivered on time

What Makes SOA Challenging?

• Intrinsically distributed

– Unknown number of possible configurations

– Focus is on interoperability versus integration

– Many dependencies - can take a lot of coordination to complete

a call through entire chain

– Web services abstract applications from back-end systems

performing the processing

• We might not know who we’re “talking” to, resulting in need for new

type of requirements => added cost and effort

– Security issues at every interface

• Infeasible to complete testing of all business workflows

across heterogeneous technology layers at system and

component levels

• Changing requirements and evolving systems

– What worked yesterday might not tomorrow

submitOrder

shippingNO

Simplified Example

Web Client Retailer System Manufacturer

System

Retailer

Service

Web

Client App

Logging

Service

Warehouse

A

Warehouse

B

Warehouse

C

Manufacturer

A

Manufacturer
B

Manufacturer
C

getCatalog

shipOrder

submitPO

Web Service

Operations

User

Operations

errorPO

Asynchronous secured

Synchronous secured

Synchronous unsecured

getEvents

logEvents
(from anywhere)

SOA Verification

• Still need testing:

– Functional, performance, interoperability and vulnerability

– Unit, integration, system, regression, and acceptance

• Need testing at implementation layer (service

verification)

– Service functionality needs to be more robust than ever,

because it may be used or attacked in unexpected ways

• Need testing at messaging layer

– All services must operate as defined by interface - Web Services

Definition Language (WSDL)

– Semantics needed too (WSDL-S)

– Example of semantics issues

• Excel spreadsheet example from Genetics Community

– Need verification of metadata

Example: SOA Messaging Elements

• Verification must consider all messaging elements of

metadata

Transport

URI, XML, SOAP

WS-Addressing/Routing/Policy/Security

WSDL, WSDL-S

BPEL, WSCI, ..

Messaging

SOAP: Simple Object Access Protocol

BPEL: Business Process Execution Language

WSCI: Web Service Choreography Interface

WSDL-S: Web Service Semantics

Static

(WSDL)

Service

choreography

Web Service

Choreography

Interface (WSCI)

Enterprise-wide SOA From Applications

Perspective

Service

applications

User

interfaces

ERP MDD/MDALegacy

Business

processes

Composite services

orchestration defined with

Business Process Modeling

Notation (BPMN) to generate

Business Process Execution

Language (BPEL)

Services may be commercial,

legacy or developed using

more modern approaches

such as Model Driven

Development (MDD) focused

generation of code for the

service applications

WSCI provides interfaces for

exchange of messages, WSDL

provides interface, SOAP

supports messaging

Other Verification Issues

• Lack of control

– Services run on an independent infrastructure and evolve under

control of provider

– Is regression testing comprehensive and feasible for every

version change?

• Verification of long sequences of asynchronous events is

difficult testing task

– Continuous self-checking of a services/system by monitoring it

during execution

• Alternative to testing

– Monitoring impacts the design process

• Requires verification to ensure monitoring works properly

• More unanticipated cost

Other Verification Issues (cont.)

• Lack of observability

– Loose coupling is a good thing, but introduces testing challenges

• Logging services may support testability

• Be a discriminator in selecting a service to use

– Web services client developers typically have access to

interfaces (WSDLs) only

• No access to the code or structure

• Dynamic behavior

– Service changes or service is no longer available

– From earlier example:

• Choosing between warehouses and manufacturers

• When/if a shipping number is generated and/or PO error is sent

• Potential need to provide mechanisms to substitute alternatives for

unavailable product

• Creates need for more error handling => more effort and cost

SOA Security

• Distributed nature of SOA applications adds complexity

– Traditional applications often use single point for identification

and authentication

– SOA applications may require users to be identified and

authenticated to multiple servers during a transaction

• No over-riding security context for composite services

– Services must determine that call to it is from an authenticated

user, with authority to perform the action

– SOA applications may require sophisticated identity

management and security policy infrastructure

• Metadata – what information is provided to an attacker?

– If a service can find another service, an attacker can too

– What happens if discovered services is established by an

attacker? And, you send your data to it?

• Security considerations at each interoperable interface

Example Requirements for Security*

• Security functionality must be considered at every

operation where there is an interface boundary

Sender 
Receiver

Operation Message Message Integrity Authenti-
cation

Confident-
iality

Algorithm

Web Client 
Retailer

getCatalog getCatalog
Request

WC X.509: Body,
UNT, Timestamp

UNT-user,
Cert Auth

R X.509:
Body,
Signature

Key: RSA 1.5,
Data: AES 128,
Digest: SHA1

Retailer 
Web Client

getCatalog getCatalog
Response

R X.509: Body,
Timestamp

Cert Auth WC X.509:
Body,
Signature

Key: RSA 1.5,
Data: AES 128,
Digest: SHA1

Web Client 
Retailer

submitOrder submitOrder
Request

WC X.509: Body,
UNT, Timestamp

UNT-user,
Cert Auth

R X.509:
Body,
Signature

Key: RSA 1.5,
Data: AES 128,
Digest: SHA1

Retailer 
Web Client

submitOrder submitOrder
Response

R X.509: Body,
Timestamp

Cert Auth WC X.509:
Body,
Signature

Key: RSA 1.5,
Data: AES 128,
Digest: SHA1

Retailer 
Warehouse n

ShipGoods ShipGoods
Request

R X.509: Body,
Config Header,
Timestamp

Cert Auth None Key: RSA 1.5,
Digest: SHA1

Warehouse n 
Retailer

ShipGoods ShipGoods
Response

Wn X.509: Body,
Timestamp

Cert Auth None Key: RSA 1.5,
Digest: SHA1

*SCM Security Architecture WGD 5-00 (March, 2006)

Security Features versus SW Defects

• Security features such as authentication, encryption,

access control, etc. are necessary but not sufficient

– Hardware appliances for networks security only “filter” - also

necessary but not sufficient

• Security often breached by exploiting vulnerabilities

– Defects (or weaknesses) in design or implementation often make

the system vulnerable

– Example SW defect: distributed error handling

• E.g., errorPO – the asynchronous error handler

Opportunities for Re-Design

• SOA projects will likely require redesign to support reuse

– Such activities provide an opportunity to address security

architecture as well as implementation details

• Organization that expose a component developed for

use in tightly coupled environment as a service need to

apply rigorous engineering for security as well as

robustness

• Analyze service connections and interfaces

– What can call what?

– What are the vulnerabilities by the interactions?

– What possible multi-state transactions can be used to break

security?

– What types of API are used? How are they vulnerable?

Design for Testability

• Requires element under test to have:

– Controllability, observability, and predictablity

• Fundamental to automation

– Well-defined interfaces and program-to-program interaction

facilitates test automation

– Automation supports rapid continual deployment, with reduced

cost

• Supports automated regression testing that is even more

important as services may change or go away

• SOA are not always predictable

– Any distributed system with asynchronous communication

makes the predictability of the systems more difficult

Test at Multiple Levels

• Increase test coverage with fewer tests

• Test service implementation at the interfaces

– Can be assured that implementation behavior is correct

– Can be accomplished with predictability in development

environment

• Isolates implementation from communication issues

• Reduces complexity of a test harness

• Separate business logic from client and server

communication and test separately

• Earlier focus on integration testing permits message-

based acceptance testing in deployment environment to

focus on service-to-service interfaces

The Right Test Automation

• Testing environment can be a strategic tool for improving

implementation efficiency and reducing manual support

– SOA testing tools generalized from Web page testing tools may

be insufficient for SOA implementations – more “manual” than

one thinks

– SOA integration testing tools that simulate service requests and

events allow testing in virtual environment

– SOA verification tools should test dynamically changing business

requirements reflected by metadata changes

– Reuse functional testing assets for performance and load testing

• Model-based testing helps ensure robustness for service

implementation and supports regression testing

– Model-based testing promotes test driven development

– Reuse of models provides high ROI

• Hard part is the distributed processing aspects of SOA

Conclusion – Paradox?

• What’s good?

– Loosely coupled, reuseable, discoverable, composite services

• What’s bad?

– Must be more robust

– Highly distributed which are harder to verify

– Requires additional effort to provide security at every interface

• Recommendations - leverage re-design opportunities:

– Address security at every interface

– Design for testability to support continuous automated testing

– Separate business logic, from implementation service and

communication

• Supports layered testing to increase coverage with fewer tests

– Address distributed process verification with alternatives such as

monitoring to supplement testing

