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Why This Topic?

• Members confirmed that dependability issues are more difficult to 

address in SOA efforts than anticipated

– Dependability, including security, reliability, availability, integrity, 

confidentiality (and Quality of Service)

– More difficult problem than with more traditional tightly-coupled systems

• Information Week survey of 273 tech pros [Sept, 4, 2006] 

– 24% say SOA & Web services projects fell short of expectations

• Of those, 55% say SOA introduced more complexity into IT environments

• 41% say they cost more than expected

– Out of all respondents using SOAs & Web services, just 7% say the 

results exceeded expectations

• Presentation discusses some of the technical challenges

– What’s different with SOA (mostly from a Web services perspective)?

– Verification, testing, and monitoring where testing is difficult or costly

– Security

– Recommendations

– Conclusion



Why Should You Care?

$$$
• SOA introduces a new dimension with potentially 

unanticipated effort/cost

• Liability costs

– Functioning improperly

– Not being delivered on time



What Makes SOA Challenging?

• Intrinsically distributed

– Unknown number of possible configurations

– Focus is on interoperability versus integration 

– Many dependencies - can take a lot of coordination to complete 

a call through entire chain

– Web services abstract applications from back-end systems 

performing the processing

• We might not know who we’re “talking” to, resulting in need for new 

type of requirements => added cost and effort

– Security issues at every interface

• Infeasible to complete testing of all business workflows 

across heterogeneous technology layers at system and 

component levels

• Changing requirements and evolving systems

– What worked yesterday might not tomorrow 
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SOA Verification

• Still need testing:

– Functional, performance, interoperability and vulnerability

– Unit, integration, system, regression, and acceptance

• Need testing at implementation layer (service 

verification)

– Service functionality needs to be more robust than ever, 

because it may be used or attacked in unexpected ways

• Need testing at messaging layer

– All services must operate as defined by interface - Web Services 

Definition Language (WSDL)

– Semantics needed too (WSDL-S)

– Example of semantics issues

• Excel spreadsheet example from Genetics Community

– Need verification of metadata



Example: SOA Messaging Elements

• Verification must consider all messaging elements of 

metadata

Transport

URI, XML, SOAP 

WS-Addressing/Routing/Policy/Security 

WSDL, WSDL-S

BPEL, WSCI, ..

Messaging

SOAP: Simple Object Access Protocol

BPEL: Business Process Execution Language

WSCI: Web Service Choreography Interface

WSDL-S: Web Service Semantics  
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Other Verification Issues

• Lack of control

– Services run on an independent infrastructure and evolve under 

control of provider

– Is regression testing comprehensive and feasible for every 

version change? 

• Verification of long sequences of asynchronous events is 

difficult testing task

– Continuous self-checking of a services/system by monitoring it 

during execution 

• Alternative to testing

– Monitoring impacts the design process

• Requires verification to ensure monitoring works properly

• More unanticipated cost 



Other Verification Issues (cont.)

• Lack of observability

– Loose coupling is a good thing, but introduces testing challenges

• Logging services may support testability

• Be a discriminator in selecting a service to use

– Web services client developers typically have access to 

interfaces (WSDLs) only

• No access to the code or structure

• Dynamic behavior

– Service changes or service is no longer available

– From earlier example:

• Choosing between warehouses and manufacturers

• When/if a shipping number is generated and/or PO error is sent

• Potential need to provide mechanisms to substitute alternatives for 

unavailable product

• Creates need for more error handling => more effort and cost



SOA Security

• Distributed nature of SOA applications adds complexity

– Traditional applications often use single point for identification 

and authentication

– SOA applications may require users to be identified and 

authenticated to multiple servers during a transaction

• No over-riding security context for composite services

– Services must determine that call to it is from an authenticated 

user, with authority to perform the action

– SOA applications may require sophisticated identity 

management and security policy infrastructure

• Metadata – what information is provided to an attacker?

– If a service can find another service, an attacker can too

– What happens if discovered services is established by an 

attacker? And, you send your data to it?

• Security considerations at each interoperable interface



Example Requirements for Security*

• Security functionality must be considered at every 

operation where there is an interface boundary

Sender  
Receiver 

Operation Message Message Integrity Authenti-
cation 

Confident-
iality 

Algorithm 

Web Client  
Retailer 

getCatalog getCatalog 
Request 

WC X.509: Body,  
UNT, Timestamp 

UNT-user, 
Cert Auth 

R X.509: 
Body, 
Signature 

Key: RSA 1.5, 
Data: AES 128, 
Digest: SHA1 

Retailer   
Web Client 

getCatalog getCatalog 
Response 

R X.509: Body, 
Timestamp 

Cert Auth WC X.509: 
Body, 
Signature 

Key: RSA 1.5, 
Data: AES 128, 
Digest: SHA1 

Web Client  
Retailer 

submitOrder submitOrder 
Request 

WC X.509: Body, 
UNT, Timestamp 

UNT-user, 
Cert Auth 

R X.509: 
Body, 
Signature 

Key: RSA 1.5, 
Data: AES 128, 
Digest: SHA1 

Retailer   
Web Client 

submitOrder submitOrder 
Response 

R X.509: Body, 
Timestamp 

Cert Auth WC X.509: 
Body, 
Signature 

Key: RSA 1.5, 
Data: AES 128, 
Digest: SHA1 

Retailer  
Warehouse n 

ShipGoods ShipGoods 
Request 

R X.509: Body,  
Config Header, 
Timestamp 

Cert Auth None Key: RSA 1.5, 
Digest: SHA1 

Warehouse n  
Retailer 

ShipGoods ShipGoods 
Response 

Wn X.509: Body, 
Timestamp 

Cert Auth None Key: RSA 1.5, 
Digest: SHA1 

 

*SCM Security Architecture WGD 5-00 (March, 2006)



Security Features versus SW Defects

• Security features such as authentication, encryption, 

access control, etc. are necessary but not sufficient

– Hardware appliances for networks security only “filter” - also 

necessary but not sufficient

• Security often breached by exploiting vulnerabilities

– Defects (or weaknesses) in design or implementation often make 

the system vulnerable

– Example SW defect: distributed error handling

• E.g., errorPO – the asynchronous error handler



Opportunities for Re-Design

• SOA projects will likely require redesign to support reuse

– Such activities provide an opportunity to address security 

architecture as well as implementation details

• Organization that expose a component developed for 

use in tightly coupled environment as a service need to 

apply rigorous engineering for security as well as 

robustness

• Analyze service connections and interfaces

– What can call what?

– What are the vulnerabilities by the interactions?

– What possible multi-state transactions can be used to break 

security?

– What types of API are used? How are they vulnerable?



Design for Testability

• Requires element under test to have:

– Controllability, observability, and predictablity

• Fundamental to automation

– Well-defined interfaces and program-to-program interaction 

facilitates test automation

– Automation supports rapid continual deployment, with reduced 

cost

• Supports automated regression testing that is even more 

important as services may change or go away

• SOA are not always predictable

– Any distributed system with asynchronous communication 

makes the predictability of the systems more difficult



Test at Multiple Levels

• Increase test coverage with fewer tests

• Test service implementation at the interfaces

– Can be assured that implementation behavior is correct

– Can be accomplished with predictability in development 

environment

• Isolates implementation from communication issues

• Reduces complexity of a test harness

• Separate business logic from client and server 

communication and test separately

• Earlier focus on integration testing permits message-

based acceptance testing in deployment environment to 

focus on service-to-service interfaces



The Right Test Automation

• Testing environment can be a strategic tool for improving 

implementation efficiency and reducing manual support

– SOA testing tools generalized from Web page testing tools may 

be insufficient for SOA implementations – more “manual” than 

one thinks

– SOA integration testing tools that simulate service requests and 

events allow testing in virtual environment

– SOA verification tools should test dynamically changing business 

requirements reflected by metadata changes

– Reuse functional testing assets for performance and load testing

• Model-based testing helps ensure robustness for service 

implementation and supports regression testing

– Model-based testing promotes test driven development

– Reuse of models provides high ROI

• Hard part is the distributed processing aspects of SOA



Conclusion – Paradox?

• What’s good?

– Loosely coupled, reuseable, discoverable, composite services

• What’s bad?

– Must be more robust

– Highly distributed which are harder to verify

– Requires additional effort to provide security at every interface

• Recommendations - leverage re-design opportunities:

– Address security at every interface

– Design for testability to support continuous automated testing

– Separate business logic, from implementation service and 

communication

• Supports layered testing to increase coverage with fewer tests

– Address distributed process verification with alternatives such as 

monitoring to supplement testing


