

Page 1 of 41

Reducing Verification Costs through
Practical Formal Methods: A Survey

Mark R. Blackburn, Ph.D.

Stevens Institute of Technology

Sumit Ray

BAE Systems

Abstract

Verification of software can be as much as 88% of the total cost to deliver a high dependability
system. Significant manual effort is often required to produce required verification evidence.

Formal methods are believed to hold promise by providing a more automatic means of

verification. Advances have been made in theorem provers and model checkers aimed to support
the verification efforts, however there are several challenges in producing verification evidence

when the requirement and design specifications use nonlinear and floating point constraints

mixed with linear, logical, and bit constraints. Some tools apply strategies to produce tests to

support verification, but the fault-finding effectiveness of the generated tests is questionable.
Finally, practical means for composing formal specifications is important for constructing

specifications that scale to large systems. This paper discusses the challenges, summarizes needed

capabilities of formal method technologies, provides a survey of tools, with experiments to assess
and compare capabilities, and finally discusses future needs to address some of the challenges.

Keyword: model-based testing, formal methods, theorem proving, test generation, constraint

solving, model checking

1 Introduction

NASA presented industry data indicating that verification is 88% of the cost to produce DO-

178B Level A software, and 75% for Level B software [1]. As shown in Figure 1, the DARPA

META pre-program solicitation (META) describes how continually increasing complexity

impacts the verification costs of software and delivery time [2]. META claims that the

fundamental design, integration, and testing approaches have not changed since the 1960. The

META program goal is to significantly reduce, by approximately a factor of five, the design,

integration, manufacturing, and verification level of effort and time for cyber physical systems.

The complexity has increased for integrated circuits, as it has for software-intensive systems, but

the developers of integrated circuits have maintained a consistent level of effort for the design,

integration and testing efforts, as reflected in Figure 1. The need is to understand key reasons

why software-intensive systems production is different from integrated circuits. One

fundamental difference is that software behavior requires nonlinear operations and constraints

that are implemented on computing hardware where operations are performed and results stored

in floating point representations. This makes the automated verification problem more

challenging than for integrated circuits, where automated verification and analysis is based

primarily on logic or bit-level manipulations. Chip developers used to rely on simulation, much

like software development uses debugging and manual testing, but the chip verification would

Page 2 of 41

cost more than 50% of the effort and defects that escape to the field could cost $500M
1
. They

now rely more on formal methods and tools to support development and verification.

What’s

Different?
Software behavior

often relies on floating

point variables with

nonlinear relationships

and constraints

Figure 1. DARPA META Program
2

DARPA and NASA, as reflected in Figure 2, believe that formal methods are a key technology

to address the verification and validation challenges as systems become more complex.

However, another issue is that our typical engineers lack advanced mathematical training and

theorem proving skills needed to use formal methods to support automated analysis and test

generation. Some of the specification languages are not necessarily intuitive or easy to use. The

verification engines (e.g., theorem provers) do not execute like simulators or debuggers.

Formal specifications and mathematical analysis theoretically present a way out of the dilemma
posed by our inability to test even a small part of the enormous state space involved in most

digital systems. They have the potential for both increasing safety and decreasing the cost of

certifying flight-critical systems. The past 30 years have advanced the state of knowledge about
formal methods to the point where many important problems can be solved. While formal

methods are being applied to hardware in industry, the results of formal methods research for

software has only rarely reached beyond the research lab and been used in industrial practice for
day-to-day software development [3].

The tools have advanced, but no one tool supports all of the verification needs (e.g., logical,

linear, nonlinear, and temporal) to cover the entire lifecycle. There is a need to provide practical

formal methods technologies that can be applied by typical engineers of software-intensive

systems. These tools must address the key gaps such as systematic analysis and verification of

systems characterized by specification that include nonlinear constraint, floating point variables.

Additionally, the tool-based solutions must scale to large systems.

1
 http://en.wikipedia.org/wiki/Pentium_FDIV_bug

2
 Modified from Paul Eremenko, META Novel Methods for Design & Verification of Complex Systems,

December 22, 2009.

http://en.wikipedia.org/wiki/Pentium_FDIV_bug

Page 3 of 41

Figure 2. Early Formal Methods

1.1 Background

The DARPA Disruptive Manufacturing Technologies (DMT) initiative funded the program:

Producible, Adaptive Model-based Software (PAMS) [4]. The domain-specific modeling tool

chain shown in Figure 3, developed by BAE Systems and Vanderbilt University as part of PAMS

illustrates a likely trend that may make formal methods more practical to apply [5]. The PAMS

project was successful in developing a methodology and a suite of tools that enables rapid,

model-supported adaptation. It addresses several of the previously discussed issues:

 The domain-specific modeling languages (DSML) are more intuitive to use by engineers

graduating with computer and engineering degrees than some of the specification languages used

by theorem provers or model checkers

 The DSML are more constrained and relate to the specific application domain, which makes them

easier to learn

 Model translations were created for the Flight-Control domain-Specific Language (FCSL) that

leverages tools like the T-VEC Vector Generation System (VGS) for model analysis, through

theorem proving, test vector generation and test driver generation to automate the production of

verification evidence

 T-VEC’s VGS supports analysis (theorem proving) and test vector generation for models

specified using Boolean (logical), linear, and nonlinear constraints and functions

 PAMS provides a framework for model language evolution that adapt to changing requirements

throughout the software lifecycle:

 At design time to evolve requirements and domain concepts

 At load time to adapt components based on mission context and resource availability

 At runtime to respond to unforeseen conditions and dynamic mission changes

Page 4 of 41

T-VEC VGSTTM

Flight Control domain-Specific

Language (FCSL)

Figure 3. BAE FCSL Domain Specific Modeling Tool Chain

The FCSL tool chain demonstrated several unique capabilities, but there are some challenges that

remain. Examples include the speed of the test vector generation, the fault-finding effectiveness

of the selected test vectors and the effectiveness of the tool chain when applied to large scale

systems. As shown in Figure 3, there are two levels of model translations, because it was easier

to translate FCSL into the T-VEC Tabular Modeling (TTM) language, an XML representation of

a declarative language based on the Software Cost Reduction (SCR) method and tool developed

by the Naval Research Laboratory [6]. TTM has a translator to VGS. However, the two levels of

model transformation introduced some issues that impacted test generation performance. While

these issues were resolved, they were the catalyst for this survey. The remainder of this paper

provides a survey with some comparative experiments to assess tools and emerging technologies

with the goal to reduce verification costs leveraging PAMS-like technologies to provide a

practical and evolvable verification environment that integrates the most promising techniques in

formal analysis with automated test generation technologies.

1.2 Objectives

The paper objectives are to present a survey of technologies that provide capabilities or strategies

to:

 Support analysis (e.g., theorem proving, modeling checking) to prove properties about the input

specification, model or program

 Support automated test generation and associated execution that demonstrates both high fault-

finding effectiveness while providing high degrees of software test code coverage

 Support verification when specifications require nonlinear, floating point constraints, in addition

to linear and logical constraints across data types; this is a key difference between software and
integrated circuit specifications

 Scale to large systems, where requirement and design specifications are the basis for producing

the evidence used to verify the implementation in a target system software

 Be “automatic” so that it can be applied by typical engineers

1.3 Organization of Paper

Section 1 discusses issues and challenges presented by NASA and DARPA at the Safe & Secure

Systems & Software Symposium, June 2010. Section 2 provides an overview of the technology

survey candidates and classes. Section 3 provides a summary of surveyed technologies that are

Page 5 of 41

being developed and evolved to address some of the objectives listed in Section 1.2. Section 4

discusses experiments performed with some of the surveyed technologies to assess the

effectiveness of generated test data at finding faults in some experimental subjects, and assessing

technologies that support analysis of specifications that are defined using nonlinear and floating

point constraints. Section 5 provides ideas for future work to address gaps identified by the

survey. The appendices provide additional backup material related to the experiments.

2 Comparison Overview

This section provides an overview of the survey candidates with a discussion of some of the

objective and subjective measures used in the analysis. Some information comes from working

directly with tools. Other information was obtained from research papers if the tool was not

available for direct evaluation. The search included Satisfiability modulo theories (SMT) solvers,

model checking tools, constraint solvers, and test generator tools with a particular emphasis on

tool support for:

 Specification- or model-based test generation

 Model (or specification) verification, proof of properties, and the ability to find defects in models;

defects are usually issues with either the requirement or design

 Test generation to support verification of an implementation on simulation, target or host

 Nonlinear, floating point constraint solving, mixed with linear and logical constraint solving

across data types

Some key attributes most important to verification include:

 Ability to solve nonlinear, in addition to linear and logical, constraints

 Ability to handle nonlinear floating point constraints

 Generation of test values that are effective at finding faults

 Composition to support specification development and scalability to large systems

2.1 Candidates and Classes

The following provides a brief introduction to some of the classes of tools considered in this

survey. By definition, SAT solvers deal with the satisfiability of Boolean formulae, but not linear

and nonlinear constraints and functions replete in control software. Extensions, provided by SMT

solvers, address formulas with linear constraints, arrays, and functions, but often have limited

support for nonlinear formulas. Model-based test generation, some of which provide theorem

proving capabilities that can identify anomalies within the model, produce test inputs and

sometimes expected outputs. Constraint solvers were also considered as they provide capabilities

to deal with nonlinear and floating point constraint solving. The candidates analyzed are shown

in Figure 4. Some were not fully analyzed due both to time constraints and availability, but

remain on the list as potential candidates for future consideration. In addition, some challenge

problems, discussed in 4.2, helped to eliminate some candidates from detailed analysis. Finally,

model checking, a type of formal methods, has provided significant capabilities for integrated

circuits verification; information from a model checking survey is cited in Section 2.2.2.

Page 6 of 41

Key

x Support

? Possible

i Through integration

None or unknown

Figure 4. Tool Candidate and Categorizations

2.2 Objective and Subjective Measures

2.2.1 SMT and Constraint Solver Measures

The SMT Competitions have been valuable for comparing SMT solvers [7]. The competition

focuses on speed at which a tool can identify whether a set of constraints is satisfiable (SAT) or

unsatisfiable (UNSAT) across a broad set of benchmarks. Applying this concept to models of

requirements or design, or proof of properties would mean:

 If the set of constraints for a requirement model resulted in UNSAT, then there is some type of

anomaly (contradiction/defect) in the requirements

 If the set of constraints applied to a safety property (e.g., weight on wheels and radar enabled)

resulted in SAT, then the design model violates the safety property

The SMT competition does not address nonlinear constraint problems, because the problem is in

general undecideable. However, some challenge problems have been created for nonlinear real

arithmetic, and floating-point nonlinear constraint solving. Details are discussed in Section 3.

2.2.2 Model Checking Measures

A model checker uses some representation of the system model (e.g., finite state machine) as

input and a temporal logic property, and then explores the state space of the system to determine

if the model violates the property. If the property is violated then a counterexample is generated

to illustrate the problem. The counterexample can be useful in testing. Model checking was first

applied and continues to be used mostly on hardware designs.

Page 7 of 41

This paper focuses on testing with model checkers in addition to proof of properties. The paper

“Testing with model checkers: A survey” provides summary of model checking capabilities,

history, and strategies for applying model checking to testing [8], [9]. One cited point to note

states:

A pilot study was conducted to investigate the suitability of condition based coverage criteria. In

this experiment, test suites were generated using different condition based coverage criteria for a
close to production model of a flight guidance system from Rockwell Collins, Inc. The fault

detection ability of the different test suites was measured on mutant versions of the model. The

experiment showed that a set of randomly generated test cases generated using the same effort
were superior to all coverage based test suites [10].

2.2.3 Fault Finding Effectiveness Measures and Strategies

The final desired measure is on selecting test values that are effective at finding faults.

There is an extensive literature on methods for generating tests that are likely, or in some cases

guaranteed, to detect various kinds of hypothesized faults, but rather few of these methods have
been automated. The boundary coverage method collects the various constraints implied by

postconditions, preconditions, and guards, then calculates their “boundary” and selects some test

points from (just) inside the boundary, and some from (just) outside [11].

It is well known that tests along domain (or subdomain) boundaries are effective in testing an

entire domain [12].

The constraints of a requirement identify domain and subdomain boundaries.

Figure 5 provides a simplified perspective of test input values selected at the subdomains

boundaries for the preconditions (constraints) that might be associated with a requirement or

design specification. The test points at the boundaries are effective at both testing for modified

decision/condition coverage (MC/DC) that are associated with the paths through the code, but

are effective also at finding faults. Figure 5 shows a two-dimensional space, but in general the

test subspace is an n-dimensional space (polyhedron) where n is the number of input variables if

the constraints are satisfiable. Ideally, one would like to select values at each of the points around

the polyhedron space, but as the number of inputs grows it would take too much time to

practically produce and execute the tests. Therefore MC/DC is usually the minimal test coverage

criteria for high dependability software systems (e.g., aircraft, medical devices).

y

x

(10,-10)

(10,10)

(-10,-10)

(-10,10)

Range of x and y is -10 to 10

x >= y AND x >= 0 output = x

OR

y > x AND y >= 0 output = y

OR

x < 0 AND y < 0 output = 0

Precondition Postcondition

Figure 5. Test Section at the Subdomain and Domain Boundaries

Page 8 of 41

Figure 6 reflects two other points about test selection strategies:

 The boundaries are not necessarily related to ground terms (variables related to constants), but

may involve constrain expressions

 Selecting one boundary may not be effective at identifying faults – this is particularly relevant to

testing computations, as using combinations of high-bound and low-bound values may better

expose an issue with the computation or expose computational issues such as overflows or

underflows

x >= 5 and (x+y) >= 6

output = v + w + x + yPrecondition

y

x
(5,1)

(10,10)

(-10,0)

(0,-10)

x y

Low-Bound Convergence

1) Initial domain of inputs -10..10 -10..10

2) Select minimum value for x 5 -10..10

3) Calculate minimum value of y 5 1

High-Bound Convergence

1) Initial domain of inputs -10..10 -10..10

2) Select maximum value for x 10 -10..10

3) Calculate maximum value of y 10 10

Postcondition

Figure 6. Subdomain and Test Point Selection Strategies

Another related issue, reflected in Figure 7, is addressing constraint solving and test selection,

when the specification are modularized and composed into hierarchical relationships as is

reflected by a simple Simulink model shown in Figure 8. Conceptually any node of a

precondition might reference some subsystem, where at least one precondition/postcondition pair

must satisfy the precondition of a higher-level (i.e., Parent) subsystem. Any node can be a simple

relation, but can be a mathematical construct with a relation that might be nonlinear as reflected

by the Simulink example in Figure 8.

Page 9 of 41

Any node is

a predicate

that can be a

math, logical,

relational

construct, or

model reference

Figure 7. Constraint Solving, Test Selection and Composition

The constraints in the Simulink model shown in Figure 8 are used as one of the challenge

problems for some of the tools in the survey discussed in Section 4.2. The Simulink model has

two seeded defects:

 One with a linear constraint that is not satisfiable

 One with a nonlinear constraint that is not satisfiable

The nonlinear constraint shown in the red box is related to the gain operator (i.e. multiplication)

in the lower-level subsystem. This creates a trivial nonlinear relationship that is represented

graphically in more detail in Figure 9. The three subsystems represented by these images show

the constrained space

 Subsystem relational_constraint shows the rectangular space

 Subsystem hierarchical_model_non_linear shows the nonlinear space associated with the gain

operator

 Subsystem non_linear_relation at the bottom shows the overlapping domains

Page 10 of 41

Figure 8. Simulink Example of Seeded Nonlinear Unsatisfiable Constraint

The small red line in Figure 9 shows that the constraint for the relational operator is just outside

the overlapping space. This means that there is no input space that satisfies the constraints. In

SMT terminology this would be UNSAT. This example illustrates a common situation where

constraint issues in requirement or design models can be difficult to identify if the models are

hierarchical models. Model composition is one way to address scaling to larger real-world

problems, but the model analysis mechanisms must be able to identify these types of issues when

models are composed hierarchically. Issues with hierarchical relationships were exposed in the

SMT candidates using the experiments discussed in Section 4.2.

Page 11 of 41

fy

0.00E+00

2.00E+00

4.00E+00

6.00E+00

8.00E+00

1.00E+01

1.20E+01

0.00E+00 5.00E-01 1.00E+00 1.50E+00 2.00E+00 2.50E+00 3.00E+00 3.50E+00 4.00E+00 4.50E+00

fy

fy

0.00E+00

5.00E-01

1.00E+00

1.50E+00

2.00E+00

2.50E+00

3.00E+00

3.50E+00

0.00E+00 2.00E-01 4.00E-01 6.00E-01 8.00E-01 1.00E+00 1.20E+00 1.40E+00 1.60E+00 1.80E+00 2.00E+00

fy

fy

0.00E+00

5.00E-01

1.00E+00

1.50E+00

2.00E+00

2.50E+00

3.00E+00

3.50E+00

0.00E+00 2.00E-01 4.00E-01 6.00E-01 8.00E-01 1.00E+00 1.20E+00 1.40E+00 1.60E+00 1.80E+00 2.00E+00

fy

relational_constraint hierarchical_model_non_linear

non_linear_relationSatisfiable

Region

Outside

Region

Figure 9. Representation of the Constrained Subdomains for Simulink Model

Figure 10 is a project status page that relates to a high-level verification flow chart. The model

analysis data is from the model shown in Figure 9, and shows different measures related to

model defects, model coverage, test result measures and test coverage measures. The typical high

assurance verification process, such as DO-178B [13], would include the following checks:

1. Models should be free of defects (e.g., unsatisfiable constraints)

2. Generated tests should be executed against code that is instrumented to ensure that all paths

through the code have been tested; tools such as VectorCAST and LDRA are commercial tools to
measure test coverage against test criteria such as MC/DC coverage.

3. All test cases should pass (i.e., actual outputs should match expected outputs within numerical

tolerances)

4. All test cases should be executed against un-instrumented code to ensure that instrumentation had

no impact on the test execution results; this is the code that will be deployed in the target system.

Page 12 of 41

Generate

tests

Model

Code

Model
defect?yes

no

Test
instrumented

code

Meets test
coverage?

Test

code

yesAll tests
pass?

no

yes
All tests
pass?

yes
Success

Code
defect?

yes
no

no

VectorCAST

Figure 10. Model-Based Measures

3 Surveyed Technologies

This section discusses different tools and technologies in the classes identified in Section 2.

3.1 SMT

The SMT Competition of 2010 covered approximately 20 divisions, which relate to the different

theories supported by the tools [6]. While there are different categories, some tools perform

better over several of the theories, especially those including nonlinear and linear mixed and real

arithmetic. Three tools used in experiments include:

 Yices – SRI, developers of PVS [14]

 CVC3 - originated at Stanford University with the SVC system, but is now being evolved by New

York University and University of Iowa [15]

 Z3 – Microsoft [16]

Equally important is that when the models produce “SAT” they return what is referred to as a

model, with values that satisfy the constraints. These values can support testing, but as shown in

the experiment discussed in 4.1, the selected values are not necessarily at the boundaries or

subdomain boundaries and this limits the fault finding effectiveness. Section 4.1 provides details

about the experiment testing the fault finding effectiveness of yices, CVC3 and T-VEC VGS.

Page 13 of 41

Some sample cases assess linear and nonlinear constraints solving of yices, CVC3 and Z3 is

described in Section 4.2.

3.2 Prover Plugin used by Simulink/Stateflow Design Verifier

The Prover plugin is an SMT solver that is used by the Mathworks Design Verifier for

Simulink/Stateflow. Rockwell performed some case studies, including one with the Prover

plugin for Simulink, and the report states [17]:

Because of its extensive use of floating point numbers and large state space, the Effector Blender

(EB) logic cannot be verified using a BDD-based model checker such as NuSMV[18]. Instead,

the EB was analyzed using the Prover SMT-solver
3
 from Prover Technologies. Even with the

additional capabilities of Prover, several new issues had to be addressed, the hardest being

dealing with floating point numbers.

While Prover has powerful decision procedures for linear arithmetic with real numbers and bit-
level decision procedures for integers, it does not have decision procedures for floating point

numbers. Translating the floating point numbers into real numbers was rejected since much of the

arithmetic in the EB is inherently nonlinear. Also, the use of real numbers would mask floating

point arithmetic errors such as overflow and underflow.

Three points are drawn from the Rockwell study:

 Floating point numbers, especially for realistic systems with large state spaces are likely to be

difficult to verify using model checkers

 Floating point numbers with nonlinear constraints that usually exist in systems need by NASA

and DARPA pose a challenge for SMT solvers as the real number solvers don’t address

nonlinearity or floating point numbers

 Floating point numbers in real environments where underflows and overflows can occur mean

that domains and ranges are needed for input and output variables

A tool chain evaluation identified similar issues with the Prover plugin for Simulink Design

Verifier (DV) that required nonlinear operations as discussed in Section 2.2.3. The tool chain

evaluation involved several tools; one comparison assessed the DV and T-VEC VGS ability to

identify satisfiability issues in models as well as test generation capabilities. The evaluation used

the model shown in Figure 8 that had two seed defects, one for a linear constraint that was

unsatisfiable and one for a non-linear constraint that was unsatisfiable. The Prover plugin did not

identify the unsatisfiable linear constraint and indicated a number of errors related to the

satisfiable of linear constraints as shown in Figure 11. T-VEC VGS was able to identify both

seeded defects, as reflected in the status generated by VGS shown in Figure 10.

Figure 11 shows some highlights from the DV generated reports. DV generates one or more test

objectives for each Simulink blocks in an attempt to achieve MC/DC test coverage of the model.

DV produces Satisfied, Unsatisfied or Error for each block as shown for the

hierarchical_model_linear/child_yz/Logical Operator block. If satisfiable, it produces a test case

similar to SMT solvers. Row 6 indicates that an error exists, but VGS generated test vectors

3
 Prover SMT-solver is the component used by the Mathworks Design Verifier

Page 14 of 41

corresponding to that block are shown in the lower right of Figure 11. NOTE: this information

was shared with the Mathworks senior executives.

Design Verifier Report

T-VEC VGS

Vectors

Number of Test Objectives: ……...124

Objectives Satisfied: ……….…... 73
Objectives Proven Unsatisfiable: …11
Objectives Producing Errors:……...40

Figure 11. Design Verifier Results Compared to T-VEC VGS (1 of 2)

Figure 12 provides another report for those “Objective Proven Unsatisfiable.” However, the

vectors generated by T-VEC VGS shown in the upper right of Figure 12 identify several test

vectors for some of the objectives classified by the DV as unsatisfiable.

Page 15 of 41

T-VEC VGS

Vectors

Figure 12. Design Verifier Results Compared to T-VEC VGS (2 of 2)

As shown Figure 13, T-VEC VGS produced 66 test vectors using the test generation mode that

produces the fewest vectors possible that are needed to provide coverage for the model paths.

The DV produced only nine test cases; note DV produces only test inputs, and does not produce

the expected outputs. The MATLAB simulator can be used to simulate the execution of the

inputs to produce the outputs.

Page 16 of 41

Design Verifier

produced only 9 tests

T-VEC VGS – 66 tests

Figure 13. Test Comparison of T-VEC and Design Verifier

3.3 Nonlinear Constraint Solvers

iSAT is an SMT solver that supports nonlinear constraints using interval constraint propagation

with Boolean combinations and some nonlinear arithmetic constraints involving transcendental

functions [19]. However, the support for nonlinear constraint solving has limitations as

evidenced by iSAT’s inability to solve some of our evaluation problems described the CalCS

paper, and shown in Figure 14 [20].

CalCS, developed at Berkeley, is not available for download, but a paper discusses its

capabilities to solve Boolean combinations of nonlinear constraints that are convex. It applies

convex programming. The following constraints (8), (9), and (10) are claimed to show issues

with iSAT. A summary is provided in Section 4.2.

Figure 14. Constraint Expression from CalCS Paper

RealPaver software is capable of modeling and solving nonlinear systems [21]. It implements a

modeling language and some interval-based algorithms to process systems of nonlinear

Page 17 of 41

constraints over the real numbers. While the RealPaver results seem promising, there have not

been additional published results since 2004. Other related solvers that were not evaluated

include: iCOs, perPlex, GlobSol, Lurupa [22].

3.4 Floating-point Nonlinear Constraint Solvers

An approach for search-based floating point constraint solving for symbolic execution is being

implemented as a plugin for the Microsoft Pex Dynamic Symbolic Execution (DSE) testing tool

[23]. It combines Search-Based Software Testing (SBST) and DSE. It attempts to support test

generation for floating point computations in DSE. Pex is a program-based approach to testing,

which generates test inputs for .NET code, based on DSE. Test inputs are generated for

parameterized unit tests, or for arbitrary methods of the code under test [24]. There is a download

available for Pex, but under the terms of the license, it could not be evaluated.

3.5 SMT versus LP Solver

Linear programming has roots with the Simplex solver. Yices and Z3, re-implement from scratch

a Simplex solver in exact rational arithmetic. From an SMT solver perspective, soundness is a

requirement. Scalable off-the-shelf Simplex implementations, (e.g., GNU Linear Programming

Kit [Glpk] and CPLex), are inexact because they use floating-point instead of exact rational

arithmetic. When the Simplex method is used as a decision procedure for linear arithmetic, this is

an issue because even the slightest approximation can be responsible for an unsound result [25].

Besson points out a practical way to deal with the potential soundness issues related to nonlinear

and floating-point constraint solving. From a proof point-of-view, the approach uses an oracle as

a witness; this provides a second independent source to judge the validity of the potentially

unsound result. While this approach is reasonable, it does require additional effort using an

interactive theorem prover. However, to fully automate the verification of an implementation

against a formal specification, there are some other possible scenarios that have been discussed

with certification authorities that leverage a similar independence argument:

 For example, as reflected in Figure 10:

 If a nonlinear, floating-point constraint solver produces test inputs and expected outputs, and

 Those tests are executed against an implementation, and the implementation produces the

same outputs within tolerance as the specification-based solver, and

 MC/DC test coverage is provided by the generated tests against the code

 This would provide verification evidence that should be adequate to support certification, because
there are multiple and independent sources that agree.

 The only remaining issues are the adequacy of the generated test cases at exposing faults, which

is discussed in Section 4.1, and qualification of the tools, which is not discussed in this paper.

3.6 Model Checking

There are many (more than 30) model checkers that check properties of specifications and

programs. We looked at BLAST and attempted to evaluate SAL-ATG (version 3.0), but could

not evaluate, because the download did not include ATG.

However, based on the statements provided by Rockwell [17 that discussed the issues of using

model checkers such as NuSMV on floating point numbers, and as discussed in Section 2.2, the

Page 18 of 41

paper “Testing with model checkers: A survey,” which provides an excellent summary of model

checking capabilities, history, and strategies for applying model checking to testing, we repeat

the point cited [8]:

 A pilot study was conducted to investigate the suitability of condition based coverage criteria.

In this experiment, test suites were generated using different condition based coverage criteria

for a close to production model of a flight guidance system from Rockwell Collins Inc. The

fault detection ability of the different test suites was measured on mutant versions of the

model. The experiment showed that a set of randomly generated test cases generated using
the same effort were superior to all coverage based test suites [10].

We emphasize that additional heuristics are needed to guide the selection of test data when the

constraints include linear and nonlinear constraints. Model checkers, like SMT solvers, are

inadequate currently.

3.7 Model-based Test Generation

There are references that Spec Explorer 2010 integrates with Z3, but in reviewing the

documentation for Spec Explorer, it is unclear how to use Z3 with Spec Explorer other than

through the Z3 API, which is applicable to several languages. Spec Explorer explores the state

space of a given model, coded in C# using slicing and represents the explored model as state

sequences. The test generation is based off of the sequences and user-specified controls such as

pairwise, interaction, isolated, seeded, etc. to select values associated with the parameters to

generate test case values (inputs, no expected outputs). Therefore, while there is significant

automation within the tools to determine the sequences, the specific values selected are largely

controlled by the model and user-specific controls, and not derived from the constraints in a

manner described in the experiment of Section 4.1.

3.8 Other Verification and Analysis Systems

Interactive theorem provers (ITP) such as Prototype Verification System (PVS) [26], Isabelle

[27], and Coq [28] are arguably powerful theorem provers. However, we are interested in

automated verification that can be performed by typical engineers, and because these types of

tools require additional expertise and rely on humans to guide the search for proofs, we did not

survey this class of theorem provers.

KeYmaera is a hybrid interactive and automatic theorem prover. It supports nonlinear constraint,

but no test generation [29]. We were not able to evaluate KeYmaera, because we did not have or

want to purchase solver plugins such as Mathematica [30].

Alloy analyzes specifications written in Alloy specification language [31]. It can generate

instances of model invariants, simulate execution of operations defined as part of the model, and

check user-specified properties of a model using a SAT-based model finder.

4 Experiments

To provide objective data about the effectiveness of these tools in supporting automated

verification, we conducted a few experiments. The first class of experiments compares the fault-

finding effectiveness of tests generated from the tools. The second class of experiments evaluates

how well the tools solve combinations of linear, nonlinear and floating point constraints to

determine if a model (specification) is SAT or UNSAT.

Page 19 of 41

4.1 Effective Test Data Comparison

The experiment used a vertical tracking functional specification. This type of function is found in

an airborne traffic and collision avoidance systems (TCAS). The specification did not have

nonlinear constraints nor did it use floating point variables. The goal of the experiment is to

analyze the fault finding effectiveness of models produced by SMT-type tools. One technique

that has been used to measure the effectiveness of test cases is called mutation analysis. Mutation

testing is a fault-based testing technique that has been effective in assessing the adequacy of a

test set for a program [32], [33], and in particular a subset of selective mutants [34] For any

program, mutations of a base program (referred to as mutants) are generated through the use of

mutation operators. A mutation operator describes a set of syntactic changes based on program

language constructs. Each mutant contains one fault. The adequacy of a test set can be measured

by its ability to detect the mutants derived from the base program. A mutation score for a test set

is the percentage of nonequivalent mutants that are killed (i.e., detected) by a test set.

The specification was created from a set of requirements similar to those described in Appendix

B.2. It was first modeled in the T-VEC Tabular Modeler and translated into T-VEC VGS that

produces test vectors (i.e., inputs and expected outputs). An equivalent model was created using

the SMT solvers CVC3 and yices. Both tools have the capability to produce a model (i.e.,

COUNTERMODEL), which includes values that satisfy the constraints. These values are used as

test inputs in the experiment. Details of the experiment and mutation testing are provided in

Appendix A.

The first criterion for the experiment is that the generated test cases must pass all test cases for

the base (non-mutated) program; all were successful as summarized in Figure 15. While the

specification of CVC3 and yices seem equivalent, the semantics of the expression were

interpreted differently. Details are provided in Appendix A. Figure 15 provides also a summary

of the test effectiveness score of T-VEC VGS compared with CVC3 and yices.

 T-VEC VGS produced 28 test vectors killing all mutants. T-VEC produced more test cases than

CVC3 or yices, because it includes several built-in test generation heuristics. For example, VGS
has test select heuristics to select low-bound and high-bound values, and for the absolute value

function, it selects values of the inputs from both the negative and positive domain.

 Two versions of CVC3 were created killing approximately 33% and 39% of the mutants

respectively. CVC3 v1 had only five vectors. CVC3 did not produce a counter model for one of
the required outputs for both v1 and v2. In addition, CVC3 v1did not produce models for several

disjunctions contained within the specification, even though the “CONTINUE” command was

issued, which we assumed would produce additional cases if they are satisfiable. The CVC3 v2

version expanded the disjunctions explicitly in a manner similar to the yices specification.

 Yices produced eight test cases killing 50% of the mutants, using a set of formulas that expanded

the disjunctions explicitly similar to CVC v2.

Page 20 of 41

Figure 15. Test Effectiveness Summary of Results

Developing the specifications for this experiment helped expose an important challenge

discussed more in Section 5.1. Modeling languages such as the BAE FCSL DSML, shown in

Figure 3, allows user to construct specifications modularly. This is important for scalability,

readability, maintainability, etc. However, to leverage the analysis and test generation

capabilities of other tool chain elements, these models must be transformed. During the

transformation process it is important to preserve the traceability from the model to the derived

specification. This allows for maintaining relationships to derived attributes such as model-to-

test traceability. Initial versions of the specification attempted to preserve the modularity, but for

the CVC3 v2 and yices specifications, the model had to be expanded completely; any modularity

in a specification is lost as the model is fully expanded at one level in a flattened model.

4.2 Nonlinear and Floating Point Constraint Comparisons

The previous experiment focused on producing tests from specifications that are effective at

exposing faults in implementations associated with that specification. In order to generate tests,

the specification, usually associated with the requirements or design, should be defects free. As

discussed in the objectives of this paper in Section 1.2, software often involves nonlinear

constraints with floating point numbers. This experiment assesses tool capabilities in linear and

nonlinear constraint solving with the additional consideration of performing the constraint

solving with floating point variables. Table 1 shows example problems used in experiments with

several of the tools. With the exception of CalCS [20], which is not available for evaluation, the

following example problems were applied to the tools. The problems included:

 Hierarchical model (linear) shown in Figure 8 (tested for both sat and unsat) – this version

did not include nonlinear constraints nor did it use floating point variables

 Hierarchical model (nonlinear) shown in Figure 8 (tested for both sat and unsat) – this version

does include nonlinear constraints, and uses floating point numbers only with T-VEC VGS,
Z3, and iSAT

 Challenges problems from the CalCS paper; the constraints from the CalCS paper are shown
in Figure 14

Page 21 of 41

Table 1. Results of Nonlinear and Linear Constraint Problems

Tool Comments

E
v
a
lu

a
ti
o
n
 l
ic

e
n
s
e

P
a
p
e
r

A
n
a
ly

s
is

 O
n
ly

h
ie

ra
ri
c
a
l
m

o
d
e
l
(l
in

e
a
r)

 -
 S

A
T

h
ie

ra
ri
c
a
l
m

o
d
e
l
(l
in

e
a
r)

 -
 U

N
S

A
T

h
ie

ra
rc

h
ic

a
l
m

o
d
e
l
(n

o
n
-l
in

e
a
r)

 -
 S

A
T

h
ie

ra
rc

h
ic

a
l
m

o
d
e
l
(n

o
n
-l
in

e
a
r)

 -
 U

N
S

A
T

C
a
lC

S
 8

C
a
lC

S
9

C
a
lC

S
1
0

T-VEC VGS x 10 10 10 10 8 8 10 1

Yices x 10 8 u u 2, 3

Z3 x 10 10 10 10 4

CVC3 x 10 10 8 8 5

CalCS x + + + 6

iSAT x 10 u 10 10 ? ? ? 7, 8

Prover (Design Verifier) x 5 ? ? ? 9

Example Problems

A score of 10 indicates that the expected results were obtained. When the score is lower than 10

or a “?” is used, the following numbered comments describe aspects of the experiment that

resulted in that lower score:

1. T-VEC VGS was able to solve the CalCS constraints, but the specification did need to reduce the

initial floating point domains. The CalCS10 has constraints ranging from 10e9 to 10e-8; this

range is larger than can be represented by a 64 bit floating point number, which has

approximately 16 digits of precision.
4

2. Yices was able to produce UNSAT for the hierarchical linear problem, but the problem needed to
be represented more in an inline fashion, which is why the score is an 8. When a named term was

used in a hierarchical manner, yices incorrectly produced SAT with the incorrect values. When

the specification is flatted, yices properly produced UNSAT, which is expected.

3. Yices returned UNKNOWN (designated by the “u”) for hierarchical model nonlinear for both

SAT and UNSAT cases; this response means that yices detected a formula that contains nonlinear
constraint, which it cannot solve and therefore returned UNKNOWN

 We did not attempt the CalCS problems with yices

4. We did not attempt the CalCS problems with Z3

5. CVC3 had a similar issue to yices, and the expressions when represented in a hierarchical fashion

caused CVC3 to return the incorrect results. Once flatted, in a manner similar to yices, CVC3 did
produce the expected results.

4
 http://en.wikipedia.org/wiki/Double_precision_floating-point_format

http://en.wikipedia.org/wiki/Double_precision_floating-point_format

Page 22 of 41

 We did not attempt the CalCS problems

6. CalCS – we accepted that the claims made in the paper were valid [20], but were unable to apply

the same problems to the tool, because there is no downloadable tool available for evaluation.

7. iSAT returned UNKNOWN for the hierarchical model (linear), when it should return UNSAT

8. We did not test the constraints documented in the CalCS paper against iSAT, but assumed the
results summarized in the CalCS paper are accurate

9. Prover Plugin and Design Verifier

 The Prover plugin and Design Verifier were run on a Simulink model provided to a Systems
and Software Consortium client, who produced the results with a licensed version of DV.

However as summarized in Section 3.2, the results were extracted from generated reports that

showed errors or objective proven unsatisfiable when in both cases T-VEC VGS produced
vectors for those satisfiable constraints.

5 Future Ideas

This section provides a summary of some ideas that are needed to leverage capabilities through

tool chains to address the spectrum of issues required to reduce the cost of verification, while

meeting the needs for usability and scalability.

5.1 Module Composition and Transformation

The SMT and model checking languages are appropriate for their intended use (i.e., specification

analysis, proof of properties), but modeling languages and evolutionary capabilities such as the

FCSL tool chain shown in Figure 3 are important for usability, readability, reviewability,

scalability, manageability, and traceability. This form of modeling is needed for scaling to larger

systems with teams of developers. Similar closing statements were made by the authors of the

“Testing with model checkers: A survey [8] -

…we need improved modeling techniques that can leverage the power of the tools.

This means that model translation and transformation are critical. Similar issues are described for

other domain specific languages used by NASA [35].

During the process of converting formal specification developed as TTM and Simulink models

we identified some unexpected interpretation with the CVC3, and yices language constructs.

CVC3 and yices provide a language construct called a lambda expression that allows terms to be

modularized, but the results produced were not interpreted in the same way. The SMT

competition benchmark specifications are focused on speed and the expressions are often flatted

into long, often difficult-to-read expressions. When the expressions are flatted, the expected

results are produce. However, DMSL or modeling languages are often high-level, with the

objectives of precision as well as readability and reviewability. They support modularity, which

is critical for scalability. In order to leverage the analysis and test generation capabilities of other

tool chain elements, these models must be transformed. During the transformation process we

want to preserve the traceability from the model to the derived specification. This allows for

maintaining relationships to derived attributes such as model-to-test traceability.

Page 23 of 41

5.2 Translation Ordering

As noted in Section 1.1, performance issues with the T-VEC VGS generation process due to

model transformation from the FCSL tool chain shown in Figure 3. During the analysis for this

report we identified how certain placement of some types of translated expressions could reduce

the execution time more than 25 times (162 seconds down to 6 seconds). These types of

situations can occur when there are one or more levels of model translation, which is the case in

this example. Additional model transformation rules can be added to change the ordering of the

clauses and improve the speed; while the TTM and VGS languages are inherently declarative,

the order of the constraint expressions does impact analysis and test generation speed.

Sections 5.1 and 5.2 identify model transformation as an area of research that is needed to link

DMSL to tool chain elements to support formal analysis and automated test generation.

5.3 Heuristics for Nonlinear and Floating Point

This paper has focused on nonlinear and floating point characteristics that have impact on

achieving the DARPA META program goals. These two characteristics of software might have

the most impact on the challenge to reduce the verification effort.

This research for this paper identified different approaches, such as convex hull used in CalCS,

and interval contraction. While T-VEC VGS operates on an “interval,” it uses different

heuristics, referred to as convergence, to solve constraints and select test values at the boundaries

or subdomain boundaries of the polyhedron associated with the constraints on the inputs. These

heuristics are different from the FloPSy effort discussed in Section 3.4 [24]. There are

opportunities to leverage the speed of decision procedures of SMT in parallel with alternative

nonlinear and floating point constraint solving by creating a hybrid mechanism as discussed in

Section 5.4.

5.4 Apply SMT in Parallel

To address the speed of vector generation, a hybrid approach could be implemented to speed up

the proof of properties and vector generation time. Here’s a scenario:

 VGS produces vectors on a hierarchy of Domain Convergence Path (DCP).

 Translation of a requirement or design model results in a hierarchy of DCPs, as represented in

Figure 16. The test generator selects test cases for the DCP paths of the high-level

components (e.g., Grandparent) without regenerating all the test vectors for each referenced

lower-level subsystem. The test vector generator bases the test selection on the DCPs for the

upper-level subsystem (Grandparent), not the combination of DCPs for the parent and
children subsystems. This mechanism precludes the combinatorial explosion associated with

tests generated from the combination of constraints in a hierarchy of subsystems. This level-

by-level process provides an efficient means for performing unit, software-integration, and
system-level testing, while allowing traceability back to the hierarchical modeled

requirements

Page 24 of 41

Child

DCP 1

DCP 2

…

DCP k

Parent

DCP 1

DCP 2

…

DCP j

Parent

DCP 1

DCP 2

…

DCP j

Grandparent

DCP 1

DCP 2

…

DCP i

Grandparent

DCP 1

DCP 2

…

DCP i

Figure 16. Hierarchical Subsystem Relationships

 A DCP is in the proper form for making a call to an SMT tool to determine satisfiability of the

DCP represented as a formula

 An approach could be developed to send a DCP to a SMT solver in parallel; this should be easy

to do as many processors today are multi-core. In parallel VGS processes the DCP using

convergence, which is known to support nonlinear and floating point constraints. If the SMT
returns UNSAT, this could be communicated to VGS to go to next DCP, otherwise if SAT or

UNKOWN (i.e., the formula contains some combination of nonlinear or floating point

expressions) and VGS should continue in an attempt to produce a test vector. This approach
requires only that SMT solvers do not produce UNSAT incorrectly.

A more details architectural perspective of these concepts is needed, but beyond the scope of this

paper.

5.5 Modular Generation of Global Invariant

The concept of global invariant generation could provide a set of global constraints to a theorem

prover that could reduce the theorem proving and test vector generation time. VGS has an

existing construct in its language to support this directly. The key need is in the generation of

global invariants; researchers in the SMT community have developed mechanisms for global

invariant generation. Assuming that moving from Domain Specific Modeling environments is a

likely trend in the future, the key need is to apply global invariant generation in a modular way

so that the global invariants are maintained within the subsystems (i.e., modular hierarchy) as

reflected by Figure 16. This is important to maintain within the module only those constraints

that are truly invariant. This means that model transformation is tied to this strategy.

5.6 Interface Modeling Tools with Open Source Model Checkers

While the model checkers were not necessarily highly effective at generating tests that were

effective at finding faults, they do have capabilities needed for model analysis. As discussed in

the NASA cases, the challenge is translating modeling languages into a form to leverage the

model checking capabilities. Open source model checking tools have been used with the

SCRtool from the Naval Research Laboratory. TTM has an import and export function for this

language. This subject needs further analysis.

5.7 Benchmarks for Producing Verification Evidence

SMT benchmarks have helped the community progress, but as discussed in this paper there are

other types of verification evidence that are needed. This paper produced a few benchmarks and

identified others such as those provided by the CalCS paper.

Page 25 of 41

6 Summary

The objectives discussed in this paper do not cover all the verification needs, yet being involved

with FAA certification, FDA, DoD, and NASA safety efforts, the examples discussed in this

paper reflect on the types of verification evidence that is needed for certification efforts that can

be 88% of the total development cost.

The adoption of formal methods will require practical modeling languages, such as the FCSL

language and Simulink that can scale to large systems. The manual translation of modeling

notation such as the SCR method and Simulink into several SMT tools has highlighted some

challenges. We need to address model transformation, and potentially standards to better

leverage tool chains that can produce the four types of verification evidence required for

certifications: model defects, related to requirement and design issues, proof of properties, test

generation for verification of the target, and test coverage to ensure completeness of the target-

based verification evidence.

7 References

[1]

 Brat, Guillaume, V & V of Flight-Critical Systems, Safe & Secure Systems & Software Symposium,

June 2010.

[2] Blackburn, Mark, Model-Driven Verification and Validation, Safe & Secure Systems & Software

Symposium, June, 15-17 2010.

[3] MAKING FORMAL METHODS PRACTICAL, Marc Zimmerman, Mario Rodriguez, Benjamin
Ingram, Masafumi Katahira, Maxime de Villepin, Nancy Leveson, MIT, Cambridge, MA

[4] Producible Adaptive Model-based Software (PAMS) technology to the development of safety critical

flight control software. PAMS has been developed under the Defense Advanced Research Projects

Agency (DARPA) Disruptive Manufacturing Technologies program. Contract # N00178-07-C-2011.

[5]

MODEL-BASED ADAPTATION OF FLIGHT-CRITICAL SYSTEMS, Sumit Ray, BAE Systems,

Johnson City, New York, Gabor Karsai, Vanderbilt University, Nashville, Tennessee , Kevin M. McNeill,

BAE Systems, Arlington, Virginia, Digital Avionics Systems Conference, 2009.

[6] Heitmeyer, Constance, Alan Bull, Carolyn Gasarch, Bruce Labaw, June 1995, SCR: A Toolset for

Specifying and Analyzing Requirements, Gaithersburg, MA, Tenth International Conference on

Computer Assurance, pp. 109-122.

 [7] Barrett, C., A. Oliveras, M. Deters, A. Stump, Satisfiability Modulo Theories Competition (SMT-

COMP) 2010: Rules and Procedures, http://www.smtcomp.org, 2010.

 [8] Testing with model checkers: a survey, Gordon Fraser, Franz Wotawa, Paul E. Ammann, SNA-TR-

2007-P2-04.

[9] Testing with model checkers: a survey, Gordon Fraser, Franz Wotawa, Paul E. Ammann, Software

Testing, Verification and Reliability, Volume 19, Issue 3, pages 215–261, September 2009.

[10] Mats Per Erik Heimdahl, George Devaraj, and Robert Weber. Specification Test Coverage Adequacy
Criteria = Specification Test Generation Inadequacy Criteria? In HASE, pages 178–186. IEEE Computer

Society, 2004. ISBN 0-7695-2094-4.

[11] Automated Test Generation with SAL, Gregoire Hamon, Leonardo de Moura and John Rushby,

2005.

[12] White, L.J., and E.I. Cohen, A Domain Strategy for Computer Program Testing, IEEE Transactions

on Software Engineering, 17, 7, July, 1980.

http://www.smtcomp.org/

Page 26 of 41

[13] Radio Technical Corporation for Aeronautics Special Committee 167 (RTCA), DO-178B/ED-12B -

Software Considerations in Airborne Systems and Equipment Certification, December, 1992.

[14] Dutertre, B., L. de Moura, The YICES SMT Solver, Computer Science Laboratory, SRI

International, http://yices.csl.sri.com/tool-paper.pdf.

[15] CVC3, http://cs.nyu.edu/acsys/cvc3/.

[16] Z3, http://research.microsoft.com/en-us/um/redmond/projects/z3/.

[17] Software Model Checking Takes Off, Miller, Whalen, Cofer, Feb. 2010.

[18] NuSMV http://nusmv.fbk.eu/.

[19] iSAT, http://gforge.avacs.org/.

[20] Nuzzo, P. A. Puggelli, S. Seshia, A. Sangiovanni-Vincentelli, CalCS: SMT Solving for Non-Linear

Convex Constraints, Formal Methods in Computer Aided Design, October, 2010.

[21] RealPaver: An Interval Solver using Constraint Satisfaction Techniques, Granvilliers, Benhamou,

2006.

[22] Verified Linear Programming – a Comparison, Keil, 2006. http://www.ti3.tu-

harburg.de/~keil/pub/VLPaC-S.pdf.

[23] Pex, http://research.microsoft.com/en-us/projects/pex/

[24] FloPSy - Search-Based Floating Point Constraint Solving for Symbolic Execution, Lakhotia,
Tillmann, Harman, de Halleux, 2010.

[25] Besson, F., On using an inexact floating-point LP solver for deciding linear arithmetic in an SMT

solver, SMT Workshop 2010, http://www.irisa.fr/celtique/fbesson/floating_point_simplex.pdf.

[26] PVS, http://www.csl.sri.com/projects/pvs/.

[27] Isabelle, http://www.cl.cam.ac.uk/research/hvg/isabelle/.

[28] Coq, http://coq.inria.fr/.

[29] KeYmaera, http://symbolaris.com/info/KeYmaera.html.

[30] Mathematica, http://www.wolfram.com/mathematica/.

[31] Alloy, http://alloy.mit.edu/community/.

[32] Hamlet, R. G. “Testing Programs with the Aid of a Compiler.” IEEE Transactions on Software
Engineering (July 1977).

[33] DeMillo, R. A., W. M. McCracken, R. J. Martin, and J. F. Passafiume. Software Testing and

Evaluation. Benjamin/Cummings Publishing Company, Redwood City, CA 1978.

[34] Offutt, J., G. Rothermel, C. Zapf, An Experimental Evaluation of Selective Mutation, Fifteenth
International Conference on Software Engineering, May 1993.

[35] Simmons, R., C. Pecheur, G. Srinivasan, Towards Automatic Verification of Autonomous Systems,

IEEE/RSJ International conference on Intelligent Robots & Systems, 2000.

A. Appendix – Fault Finding Effectiveness Information

This section describes an experiment to compare the fault-finding effectiveness of test generated

from T-VEC VGS and the model outputs from CVC3 and yices. The experiment uses a fault-

seeding technique, referred to as mutation testing. Mutation testing has been shown to be

http://yices.csl.sri.com/tool-paper.pdf
http://cs.nyu.edu/acsys/cvc3/
http://research.microsoft.com/en-us/um/redmond/projects/z3/
http://nusmv.fbk.eu/
http://gforge.avacs.org/
http://www.ti3.tu-harburg.de/~keil/pub/VLPaC-S.pdf
http://www.ti3.tu-harburg.de/~keil/pub/VLPaC-S.pdf
http://research.microsoft.com/en-us/projects/pex/
http://www.irisa.fr/celtique/fbesson/floating_point_simplex.pdf
http://www.cl.cam.ac.uk/research/hvg/isabelle/
http://coq.inria.fr/
http://symbolaris.com/info/KeYmaera.html
http://www.wolfram.com/mathematica/

Page 27 of 41

effective; however, because the number of mutants for real-world programs can grow large, it is

typically expensive to use. This experiment used a subset of selective mutants.
5
 Selective

mutants use a subset of the standard mutation operators and appear to be effective in generating

minimally sized, adequate test sets for finding faults in programs.

Figure 17 shows the relationships between the elements of the design. The design uses a base

program that is a correct implementation for the requirements. The specification was modeled

using TTM, CVC3 and yices. Test vectors were generated from the TTM model using T-VEC

VGS. Test cases are extracted from the countermodel produced by CVC3 and yices. The base

program executes correctly with respect to the test cases produced from the specification for

VGS, CVC3, and yices. For this experiment, correct means that the: the actual output values

must equal the expected output values for all test inputs.

T-VEC
VGS

CVC3, yices
(SMT)

Test

Vectors

Mutant

1Mutant

2
Mutant

n

. . .

Mutations of

base programs

Test Cases
Execution

Environment

Actual outputs

Base

Program

Mutant
Generator

Specification

Figure 17. Experimental Design

The base program was mutated using the selective mutants. The selective mutant operators

summarized in Table 2 were applied to those constructs used in the base program. The mutations

resulted in 18 mutants. The test sets, both generated from VGS, CVC3 and yices, were executed

by each mutant, and the actual output was recorded. If the actual output equaled the expected

output, the test cases did not expose the mutant (aka “kill” the mutant).

Table 2. Select Mutant Operators

5
 Offutt, A. J., A. Lee, G. Rothermel, R. Untch, and G. Zapf. An Experimental Determination of Sufficient

Mutant Operators, Internal Draft. Fairfax, Virginia: George Mason University, October 1994.

Page 28 of 41

A.1 TTM Models

The TTM modeling notation is derived the Software Cost Reduction method.

Page 29 of 41

A.1 CVC3 Version 1

The following is the CVC3 specification created that is intended to be equivalent to the TTM

model shown above. See the http://www.cs.nyu.edu/acsys/cvc3/doc/user_doc.html for a

description of the language.

%%% Description: Vertical tracker for CVC3 (Version 1)

%%% This is an provides a specification for a vertical tracker function.

%%% This should be equivalent to the one produced in TTM.

%%% Create by: Mark Blackburn

%%% Last update: 13-Nov-2010

altitudeType: TYPE = SUBTYPE(LAMBDA (x: INT): x >= -1000 AND x <= 127000, 0);

DATATYPE

 statusType = BAD | GOOD

END;

DATATYPE

http://www.cs.nyu.edu/acsys/cvc3/doc/user_doc.html

Page 30 of 41

 trackingStateType = FAIL | INIT | COAST | IN_TRACK | NOT_IN_VOLUME | TOO_FAST | NONE

END;

output: trackingStateType;

currentStatus, previousStatus : statusType;

lastAltitude, nearestAltitude, ownAltitude, pred_alt: altitudeType;

OUTSIDE_WINDOW: altitudeType = 2701;

t_altRate: altitudeType =

 IF lastAltitude >= ownAltitude THEN lastAltitude - ownAltitude

 ELSE ownAltitude - lastAltitude ENDIF;

AltitudeWindow: altitudeType =

 IF nearestAltitude > ownAltitude THEN nearestAltitude - ownAltitude

 ELSE ownAltitude - nearestAltitude ENDIF;

t_inAltitudeWindow: BOOLEAN = AltitudeWindow >= -2700 AND AltitudeWindow <= 2700;

m_tracking: BOOLEAN = ownAltitude >= 10000;

trackingState: trackingStateType =

 IF (NOT m_tracking OR m_tracking AND currentStatus = BAD AND previousStatus = BAD)

 AND pred_alt = OUTSIDE_WINDOW

 AND output = FAIL

 THEN FAIL

 ELSIF m_tracking

 AND currentStatus = GOOD

 AND previousStatus = GOOD

 AND NOT t_inAltitudeWindow

 AND pred_alt = OUTSIDE_WINDOW

 AND output = NOT_IN_VOLUME

 THEN NOT_IN_VOLUME

 ELSIF m_tracking

 AND currentStatus = GOOD

 AND previousStatus = BAD

 AND ((NOT t_inAltitudeWindow

 AND pred_alt = OUTSIDE_WINDOW)

 OR

 (t_inAltitudeWindow

 AND pred_alt = ownAltitude - nearestAltitude))

 AND output = INIT

 THEN INIT

 ELSIF m_tracking

 AND currentStatus = BAD

 AND previousStatus = GOOD

 AND t_inAltitudeWindow

 AND pred_alt = lastAltitude

 AND output = COAST

 THEN COAST

 ELSIF m_tracking

 AND currentStatus = GOOD

 AND previousStatus = GOOD

 AND t_inAltitudeWindow

 AND t_altRate <= 100

 AND pred_alt = (t_altRate / 2 + t_altRate)

 AND output = IN_TRACK

 THEN IN_TRACK

 ELSIF m_tracking

 AND currentStatus = GOOD

 AND previousStatus = GOOD

 AND t_inAltitudeWindow

 AND t_altRate > 100

 AND pred_alt = OUTSIDE_WINDOW

 AND output = TOO_FAST

 THEN TOO_FAST

 ELSE

 NONE

 ENDIF;

PUSH;

Page 31 of 41

CHECKSAT trackingState=FAIL;

COUNTERMODEL;

CONTINUE;

POP;

PUSH;

CHECKSAT trackingState=INIT;

COUNTERMODEL;

CONTINUE;

POP;

PUSH;

CHECKSAT trackingState=COAST;

COUNTERMODEL;

POP;

PUSH;

CHECKSAT trackingState=TOO_FAST;

COUNTERMODEL;

POP;

PUSH;

CHECKSAT trackingState=NOT_IN_VOLUME;

COUNTERMODEL;

POP;

PUSH;

CHECKSAT trackingState=IN_TRACK;

COUNTERMODEL;

POP;

A.1 CVC3 Version 2

%%% Description: Vertical tracker for CVC3 (Version 2)

%%% This is an provides a specification for a vertical tracker function.

%%% This should be equivalent to the one produced in TTM.

%%% Create by: Mark Blackburn

%%% Last update: 14-Nov-2010

altitudeType: TYPE = SUBTYPE(LAMBDA (x: INT): x >= -1000 AND x <= 127000, 0);

DATATYPE

 statusType = BAD | GOOD

END;

DATATYPE

 trackingStateType = FAIL | INIT | COAST | IN_TRACK | NOT_IN_VOLUME | TOO_FAST | NONE

END;

output: trackingStateType;

currentStatus, previousStatus : statusType;

lastAltitude, nearestAltitude, ownAltitude, pred_alt: altitudeType;

OUTSIDE_WINDOW: altitudeType = 2701;

t_altRate: altitudeType =

 IF lastAltitude >= ownAltitude THEN lastAltitude - ownAltitude

 ELSE ownAltitude - lastAltitude ENDIF;

AltitudeWindow: altitudeType =

 IF nearestAltitude > ownAltitude THEN nearestAltitude - ownAltitude

 ELSE ownAltitude - nearestAltitude ENDIF;

t_inAltitudeWindow: BOOLEAN = AltitudeWindow >= -2700 AND AltitudeWindow <= 2700;

m_tracking: BOOLEAN = ownAltitude >= 10000;

PUSH;

ASSERT NOT m_tracking AND pred_alt = OUTSIDE_WINDOW AND output = FAIL;

CHECKSAT;

COUNTERMODEL;

CONTINUE;

POP;

Page 32 of 41

PUSH;

ASSERT m_tracking AND currentStatus = BAD AND previousStatus = BAD

 AND pred_alt = OUTSIDE_WINDOW

 AND output = FAIL;

CHECKSAT;

COUNTERMODEL;

POP;

PUSH;

ASSERT m_tracking AND currentStatus = GOOD AND previousStatus = BAD

 AND NOT t_inAltitudeWindow AND pred_alt = OUTSIDE_WINDOW AND output = INIT;

CHECKSAT;

COUNTERMODEL;

POP;

PUSH;

ASSERT m_tracking AND currentStatus = GOOD AND previousStatus = BAD

 AND t_inAltitudeWindow AND pred_alt = ownAltitude - nearestAltitude

 AND output = INIT;

CHECKSAT;

COUNTERMODEL;

POP;

PUSH;

ASSERT m_tracking AND currentStatus = BAD AND previousStatus = GOOD

 AND t_inAltitudeWindow AND pred_alt = lastAltitude AND output = COAST;

CHECKSAT;

COUNTERMODEL;

POP;

PUSH;

ASSERT m_tracking AND currentStatus = GOOD AND previousStatus = GOOD

 AND t_inAltitudeWindow AND t_altRate > 100 AND pred_alt = OUTSIDE_WINDOW

 AND output = TOO_FAST;

CHECKSAT;

COUNTERMODEL;

POP;

PUSH;

ASSERT m_tracking AND currentStatus = GOOD AND previousStatus = GOOD

 AND NOT t_inAltitudeWindow AND pred_alt = OUTSIDE_WINDOW AND output = NOT_IN_VOLUME;

CHECKSAT;

COUNTERMODEL;

POP;

PUSH;

ASSERT m_tracking AND currentStatus = GOOD AND previousStatus = GOOD AND t_inAltitudeWindow

 AND t_altRate <= 100 AND pred_alt = (t_altRate / 2 + t_altRate)

 AND output = IN_TRACK;

CHECKSAT;

COUNTERMODEL;

POP;

A.2 Yices

;;; Description: Vertical tracker for yices.

;;; This is an provides a specification for a vertical tracker function.

;;; This should be equivalent to the one produced in TTM.

;;; Create by: Mark Blackburn

;;; Last update: 10-Nov-2010

(set-evidence! true)

(set-verbosity! 3)

(define-type altitudeType(subtype (v::int) (and (>= v -1000) (<= v 127000))))

(define-type statusType (scalar BAD GOOD))

(define-type trackingStateType (scalar FAIL INIT COAST IN_TRACK NOT_IN_VOLUME TOO_FAST

NONE))

(define output:: trackingStateType)

(define currentStatus:: statusType)

Page 33 of 41

(define previousStatus:: statusType)

(define lastAltitude:: altitudeType)

(define nearestAltitude:: altitudeType)

(define ownAltitude:: altitudeType)

(define pred_alt:: altitudeType)

(define OUTSIDE_WINDOW::altitudeType)

(define t_altRate::altitudeType (if (>= lastAltitude ownAltitude) (- lastAltitude

ownAltitude) (- ownAltitude lastAltitude)))

(define AltitudeWindow::altitudeType (if (> nearestAltitude ownAltitude) (- nearestAltitude

ownAltitude) (- ownAltitude nearestAltitude)))

(define t_inAltitudeWindow::bool (and (>= AltitudeWindow -2700) (<= AltitudeWindow 2700)))

(define m_tracking::bool (>= ownAltitude 10000))

(assert (= OUTSIDE_WINDOW 2701))

(push)

(echo "FAIL\n")

(assert (and (not m_tracking) (= pred_alt OUTSIDE_WINDOW) (= output FAIL)))

(check)

(pop)

(push)

(echo "FAIL\n")

(assert (and (= m_tracking true) (= currentStatus BAD)(= previousStatus BAD)(= pred_alt

OUTSIDE_WINDOW) (= output FAIL)))

(check)

(pop)

(push)

(echo "INIT\n")

(assert (and (= m_tracking true) (= currentStatus GOOD)(= previousStatus BAD) (not

t_inAltitudeWindow) (= pred_alt OUTSIDE_WINDOW) (= output INIT)))

(check)

(pop)

(push)

(echo "INIT\n")

(assert (and (= m_tracking true) (= currentStatus GOOD)(= previousStatus BAD) (=

t_inAltitudeWindow true) (= pred_alt (- ownAltitude nearestAltitude)) (= output INIT)))

(check)

(pop)

(push)

(echo "NOT_IN_VOLUME\n")

(assert (and (= m_tracking true) (= currentStatus GOOD)(= previousStatus GOOD) (not

t_inAltitudeWindow) (= pred_alt OUTSIDE_WINDOW) (= output NOT_IN_VOLUME)))

(check)

(pop)

(push)

(echo "COAST\n")

(assert (and (= m_tracking true) (= currentStatus BAD)(= previousStatus GOOD) (=

t_inAltitudeWindow true) (= pred_alt lastAltitude) (= output COAST)))

(check)

(pop)

(push)

(echo "IN_TRACK\n")

(assert (and (= m_tracking true) (= currentStatus GOOD)(= previousStatus GOOD) (=

t_inAltitudeWindow true) (<= t_altRate 100)

 (= pred_alt (+ t_altRate (/ t_altRate 2)))

 (= output IN_TRACK)))

(check)

(pop)

(push)

(echo "TOO_FAST\n")

Page 34 of 41

(assert (and (= m_tracking true) (= currentStatus GOOD)(= previousStatus GOOD) (=

t_inAltitudeWindow true) (> t_altRate 100)

 (= pred_alt OUTSIDE_WINDOW)

 (= output TOO_FAST)))

(check)

(pop)

B. Technical Details

This section uses an example to explain technical details related to test data selection for

domains and subdomains. Although the test selection process can be performed manually, the

number of cases and the complexity of system requirements make the selection of test values at

the domain or subdomain boundaries a challenging manual task. TAF’s test generation performs

domain-based test selection from a requirements model of the software component under test or

a hierarchical model to address a multileveled system component. The test generation produces

test points for all constraints in a model and can provide the equivalent of modified condition-

decision-level (MCDC) test coverage of the modeled specification. For MCDC coverage, every

point of entry and exit in the program has been invoked at least once; every condition in a

decision in the program has taken on all possible outcomes at least once; and each condition has

been shown to affect that decision outcome independently. A condition is shown to affect a

decision’s outcome independently by varying just that decision while holding fixed all other

possible conditions. See Hayhurst (2001) for a more in-depth summary of structural coverage.
6

B.1 Testing Strategies

Testing strategies are typically characterized as structural, that is, related directly to an

implementation, and functional, that is, based on a specification.
7
 Specification-based testing, or

black-box testing, relies on properties of the software that are captured in the functional

specifications (or requirements model, including interfaces, possibly design and other
behavioral information). The traditional functional testing approach is to partition the input

domain into equivalence classes and select test data from each class.
8

The following three types of errors can be made in an implementation, resulting in a fault:
9

 A computation error occurs when the correct path through the program is taken, but the

output is incorrect because of faults in the computation along the path.

 A domain error occurs when an incorrect output is generated because the wrong path was
executed through a program.

6
 Hayhurst, Kelly J., Dan S. Veerhusen, John J. Chilenski, and Leanna K. Rierson. A Practical Tutorial on

Modified Condition/Decision Coverage, NASA/TM-2001-210876, 2001.
http://techreports.larc.nasa.gov/ltrs/PDF/2001/tm/NASA-2001-tm210876.pdf

7
 Howden, W.E. “Functional Program Testing.” IEEE Transactions on Software Engineering 6,2(1980):

162-169.

8
 Richardson, D.J., S. Leif Aha, and T.O. O'Malley. “Specification-Based Oracles for Reactive Systems.”

In Proceedings, 14th International Conference on Software Engineering. New York, NY pages 105-
118,1992.

9
 Howden, W.E. “Reliability of the Path Analysis Testing Strategy.” IEEE Transactions on Software

Engineering 2,9(1976): 208-215.

Page 35 of 41

 A missing-path error occurs when the implementation does not fully implement the
requirements or design. This type of error must be identified by inspection rather than testing.

White and Cohen proposed domain testing theory as a strategy for selecting test points to reveal

domain errors.
10

 It is based on the premise that if there is no coincidental correctness, then test

cases that localize the boundaries of domains with arbitrarily high precision are sufficient to test

all the points in the domain. Domain testing theory is based on the intuitive idea that faults in the

implementation are more likely to be found by test points chosen near appropriately defined

program input and output domain boundaries.
11

Beizer describes "domain testing" as an approach to select test inputs based on the domains

(ranges) of the system inputs at or around the maximum and minimum values of these ranges.
12

Furthermore, he describes "formal specification based testing," which starts with the system

input domains, then partitions these domains into subdomains based on the logic within the

specification (model). Using this technique, picking test input values from the subdomains

verifies the logic of the application. This is also referred to as partitioning. Each partition is an

equivalence class that must be tested.

B.2 Understanding Domains and Subdomains

The following example explains the concepts of domain and subdomain as they support an

objective approach to systematic test selection. The following Vertical Tracker example is

simplified from a requirement of the Traffic and Collision Avoidance System (TCAS). A

Vertical Tracker component would track another aircraft relative to one's current altitude and

must maintain the tracking state. Figure 18 provides some additional details about the Vertical

Tracker. The altitude of an aircraft can range from –1,000 feet to 127,000 feet. The Own Aircraft

is located in the center of the model. Another aircraft is considered to be “in_altitude_window” if

it is within 2,700 feet above or below Own Aircraft. It is within the altitude rate limit (i.e.,

“rate_limit”) if it satisfies the constraint that is represented by the shaded area. Other

requirements are related to the Vertical Tracking state as defined by the following:

 The Vertical Tracker for Own Aircraft shall be in TRACKING state if Own Aircraft

is at or above 10,000 feet in altitude, but no other aircraft is in the altitude window.

 The Vertical Tracker for Own Aircraft shall be in ADVISORY state if Own Aircraft

is at or above 10,000 feet in altitude, and another aircraft is in the altitude window.

 The Vertical Tracker for Own Aircraft shall be in NOT_TRACKING state if Own

Aircraft is less than 10,000 feet in altitude.

As shown in Figure 18, Aircraft 1 is in the altitude window but does not meet the altitude rate

limit; Aircraft 2 meets both constraints; and Aircraft 3 does not meet any of the constraints.

10

 White, L. J., and E. I. Cohen. “A Domain Strategy for Computer Program Testing.” IEEE Transactions
on Software Engineering SE6,3 (May 1980).

11
 Tsai, W.T., D. Volovik, and T.F. Keefe. “Automated Test Case Generation for Programs Specified by

Relational Algebra Queries.” IEEE Transactions on Software Engineering 16,3 (March 1990):316-324.

12
 Beizer, B., Black-Box Testing: Techniques for Functional Testing of Software and Systems, 1995, ISBN

0-471-12094-4.

Page 36 of 41

2700

-2700

2700 2700

-2700 -2700

Own Aircraft

Aircraft 1

Aircraft 2

Aircraft 3

rate_limit

in_altitude_window

(alt >= -2700

AND

alt <= 2700)

Figure 18. Visual Representation of Vertical Tracker Constraints

The domain is the set of values that go into a function; the domain of the input space for aircraft

altitude can range from –1,000 to 127,000 feet. For two aircraft, the input space is defined by the

cross-product of Own Aircraft’s altitude and the nearest aircraft’s altitude (i.e.,

“Nearest_altitude”), and both have the same input domain as reflected in Figure 19. For this

example, Aircraft 2 is the Nearest_altitude, as shown in Figure 18.

Own_altitude

(12700,-1000)

(12700, 12700)

(-1000,-1000)

(-1000,12700)

Domains:

Own_altitude integer range [-1000..127000]

Nearest_altitude integer range [-1000..127000]

Nearest_altitude

Figure 19. Input Domains

Another requirement for the Vertical Tracker is that if the Own Aircraft is above 10,000 feet,

then it is in tracking mode. This requirement imposes a constraint on the input space that

partitions the domain into two subdomains as reflected by Figure 20, labeled TRACKING

MODE and NOT TRACKING MODE. For testing purposes, it is important to have at least one

test point for each subdomain of a component’s input space. Ideally, the test points should be

selected near the boundaries of the domain. In this case, some of the critical points for the

Page 37 of 41

boundary defined by the constraint occur where the Own_altitude is less than 10,000 (e.g., –

1,000, 9,999) and greater than or equal to 10,000 (e.g., 10,000, 10,001, 12,700).

Constraint:

If Own_altitude >= 10000 then TRACKING MODE

Else NOT TRACKING MODE

TRACKING MODE

NOT TRACKING MODE

Own_altitude

(12700,-1000)

(12700, 12700)

(-1000,-1000)

(-1000,12700)

Nearest_altitude

Figure 20. Partition of Domain Into Subdomains

When the Own Aircraft is in tracking mode (i.e., Own_altitude >= 10,000) and another aircraft is

within 2,700 feet above or below, then the aircraft goes into an advisory mode. This creates

another subdomain, labeled ADVISORY, with different boundaries as reflected in Figure 21.

Figure 22 shows test points overlaid on an enlarged image of the ADVISORY subdomain for test

cases 11, 13, and 18 that were generated by TAF. Notice that the values selected are at or near

the boundaries of the subdomain. These are the test values that are likely to uncover faults.

Constraint:

If Own_altitude in TRACKING MODE
AND abs(Own_altitude – Nearest_altitude) <= 2700

then ADVISORY

Nearest_altitude

(12700,-1000)

(12700, 12700)

(-1000,-1000)

(-1000,12700)

TRACKING MODE

NOT TRACKING MODE

A
D

V
IS

O
R

Y

10000

Figure 21. Constraints for Advisory Mode

Page 38 of 41

7300

10000

12700

ADVISORY

Figure 22. Sample Test Points

B.3 Domain Error Coverage

Subdomains are introduced when a requirement or design constraint is specified. These

constraints result in decisions that must be implemented, and those decisions manifest in

different code paths. The constraints introduce new boundaries as shown in Figure 21, which are

associated with the logically AND’ed set of conditions for that constraint, for example:

The Vertical Tracker is in ADVISORY mode when Own Altitude >= 10,000 AND

abs(Own Altitude – Nearest Altitude) <= 2,700

In T-VEC, this is called a domain convergence path (DCP), and the test generator selects input

test values for the borders of the subdomain. A border is defined by evaluating the predicates

(i.e., individual constraints) of a DCP for a set of input values. Test points for numeric objects

are selected for both upper and lower domain boundary values as reflected in Figure 22. This

results in test points for subdomain borders based on all low-bound values and high-bound input

values that satisfy the DCP predicates.

Domain errors are associated with the requirements and occur if the constraints are not

satisfiable. If domain errors do not exist in the modeled requirement, the selection of extreme

values provides test points to detect computation errors (e.g., overflow, underflow, or incorrect

calculations). Intuitively, this domain testing mechanism provides confidence that every path of

the implementation is correct with respect to every DCP and function of a component’s

requirement or design model.

Table 3 shows a few of the test points that should be considered for the Vertical Tracker. These

values are near the domain or subdomain boundaries.

Table 3. Test Points for Vertical Tracker State

Page 39 of 41

 # State nearest_altitude own_altitude

10
ADVISORY 127000 126999

9
ADVISORY 127000 127000

8
ADVISORY 10001 10000

7
ADVISORY 7500 10000

6
TRACKING 127000 124499

5
TRACKING 124499 127000

4
TRACKING 12501 10000

3
TRACKING -1000 10000

2
NOT_TRACKING -1000 9999

1
NOT_TRACKING 127000 -1000

B.4 Computation Error Coverage

Some inputs to functions are not constrained by the DCP predicates. For each test point derived

from DCP predicates, there are additional test points derived for unconstrained inputs not

referenced in the DCP. Test values are selected based on the domain boundary value

combinations (e.g., low bound and high bound for numeric objects and sets for enumerated

variables). By selecting the extreme value combinations, there is a possibility to detect

computation errors in the output calculation. This test selection strategy is used to detect

computation errors or show that unconstrained inputs do not affect the output for a program path.

B.5 Path Combinations in Hierarchical Systems

Test effectiveness in hierarchical systems is more challenging because paths are threaded

together through hierarchically related components. A path refers to one logically AND’ed set of

constraints as discussed for subdomains, but with hierarchical paths, it includes logically

AND’ing conditions from hierarchically related components. Usage data is not likely to cover all

paths related to the implementation or the requirements. There are two key issues related to

selecting effective test data for hierarchically related components:

 Selecting test data to cover all combinations of paths requires a combinatorial larger

number of test cases.

 Selecting test values to traverse all paths is numerically challenging, requiring that

constraints associated with the paths be analyzed to select the appropriate test data.

To generate tests for every path throughout a hierarchy of software components can be more

effort-intensive and costly, but the cost and effort to minimally cover each path through all

components can be minimized if testing is performed on a layer-by-layer basis. Consider the

example shown in Figure 23:

Component C calls C.1, and C.1 calls C.1.1 and C.1.2. The exclusive paths in each component

are:

 — C = 2 paths

 — C.1 = 4 paths

 — C.1.1 = 4 paths

 — C.1.2 = 3 paths

Page 40 of 41

C

C.1

C.1.2C.1.1

Testing here

demands

2 * 4 * 4 * 3 = 96 tests

Testing at all levels

takes

2 + 4 + 4 + 3 = 13
tests

Figure 23. Example Illustrating Paths and Test Coverage

To cover all the paths from the top-level component (C) would require 96 total tests. The

required number of tests is 13 if a level-by-level approach is used to test each path in each

component. The effort becomes exponential if a tester attempts to test all combinations of paths

from the higher level, for example through a graphical user interface (GUI) represented by

component C. When testing on a level-by-level basis, tests must be constructed to cover only the

conditions associated with the paths of that component, which also can demonstrate that the

integration within that level operates properly. Usage-based testing seldom occurs on a level-by-

level basis, and it is unlikely that 96 tests will be performed. Therefore, the reliability estimate

should take this into consideration.

T-VEC VGS supports hierarchical relationships. In generating test vectors for a hierarchy of

models, as represented in Figure 24, the test generator selects test cases for the DCP paths of the

high-level components (e.g., Grandparent) without regenerating all the test vectors for each

referenced lower-level subsystem. The test vector generator bases the test selection on the DCPs

for the upper-level subsystem (Grandparent), not the combination of DCPs for the parent and

children subsystems. This mechanism precludes the combinatorial explosion associated with

tests generated from the combination of constraints in a hierarchy of subsystems as represented

in Figure 23. This level-by-level process provides an efficient means for performing unit,

software-integration, and system-level testing.

Child

DCP 1

DCP 2

…

DCP k

Parent

DCP 1

DCP 2

…

DCP j

Parent

DCP 1

DCP 2

…

DCP j

Grandparent

DCP 1

DCP 2

…

DCP i

Grandparent

DCP 1

DCP 2

…

DCP i

Figure 24. Hierarchical Subsystem Relationships

C. SMT Theories

The following list the different divisions of the SMT competition. QF_ stands for quantifier free.

 QF UF: uninterpreted functions.

 QF RDL: real difference logic.

 QF IDL: integer difference logic.

 QF UFIDL: uninterpreted functions and integer difference logic.

Page 41 of 41

 QF UFLIA: uninterpreted functions and linear integer arithmetic.

 QF UFLRA: uninterpreted functions and linear real arithmetic.

 QF UFNRA: uninterpreted functions and nonlinear real arithmetic.

 QF LRA: linear real arithmetic.

 QF LIA: linear integer arithmetic.

 QF NIA: nonlinear integer arithmetic.

 QF AX: arrays with extensionality.

 QF AUFLIA: arrays, uninterpreted functions and linear integer arithmetic.

 QF BV: fixed-width bitvectors.

 QF AUFBV: arrays, fixed-width bitvectors and uninterpreted functions.

 LRA: (quantified) linear real arithmetic.

 AUFLIA+p: (quantified) arrays, uninterpreted functions and linear integer arithmetic,

patterns included.

 AUFLIA−p: (quantified) arrays, uninterpreted functions and linear integer arithmetic,

patterns not included.

 AUFLIRA: (quantified) arrays, uninterpreted functions and mixed linear integer and real
arithmetic.

 UFNIA+p: (quantified) uninterpreted functions and nonlinear integer arithmetic, patterns
included.

 AUFNIRA: (quantified) arrays, uninterpreted functions and mixed nonlinear integer and real

arithmetic.

D. Trademarks

 LDRA is a registered trademark of Liverpool Data Research.

 Prover Plug-In is a trademark of Prover Technology AB in Sweden.

 Simulink is a registered trademark of The MathWorks.

 Stateflow is a registered trademark of The MathWorks.

 Simulink Design Verifier is a trademark of The MathWorks.

 T-VEC is a registered trademark of T-VEC Technologies, Inc.

 VectorCAST is a trademark of Vector Software.

 All other trademarks belong to their respective organizations.

