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Abstract Contents 

Consortium members are interested in various 
aspects of software reliability, including estimating, 
predicting, measuring, and using approaches that 
reduce the effort to achieve more predictable levels 
of reliability in the systems that they produce. This 
paper discusses an approach proposed with a 
Consortium member to derive tests from 
requirement models that can provide an objective 
basis for predicting software reliability while 
reducing the cost. The benefits of this approach 
over traditional approaches to test-case selection 
support early reliability estimation, while reducing 
effort to manually identify and select valid test sets, 
compressing the “execution time” factor in reliability 
measure calculation. An added benefit is that the 
test sets will support requirement-to-test traceability, 
which is often a requirement in high-assurance 
systems. Finally, this paper argues that domain-
based testing is the software domain equivalent to 
infinite test time in the electrical or mechanical 
domains. 
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Introduction 
Attaining high reliability of software is ever more challenging as system complexity continues to 
increase. Arguably, the variations in the software development process can be significant from 
organization to organization as well as person to person. One aspect of software reliability 
attempts to numerically quantify the uncertainty in the production of software using models to 
predict reliability and fault content within the software system. Software fault forecasting relies 
often on measurement data that is derived primarily from testing to predict the reliability of a 
system. Testing, combined with fault measurement, often is used to calculate software reliability 
based on different reliability models. 

Software reliability engineering (SRE) [Musa 1993] is a popular approach to guide the testing to 
support predictable reliability and a recommended practice [Schneidewind 2004]. SRE uses 
operational profiles to characterize how a system will be used. Using an operational profile to 
guide testing provides a basis to stop testing after the most-used operations have received the 
most testing for the given test time. Critics of operational testing cite many reasons why 
systematic testing is superior [Grottke 2001]. Another problem with reliability testing and 
prediction is that the result is specific to a particular operational profile [Bishop 2002]. 
Operational profiles do not necessarily characterize all the requirement, design, or 
implementation paths through a component, and if a path with a fault is never probed, the fault 
will not be exposed, thereby providing a false estimate of reliability. Other studies indicate that 
only a small minority of industrial organizations use operational testing [Frankl 1998]. Many 
organizations use available fault and historical data with reliability models to estimate reliability. 

Background 
Figure 1 provides a good place to start the discussion related to test data and reliability 
estimation. Conceptually, if an organization captures the failures per unit of time throughout the 
development and test phases, and at the point where the number of failures during that period 
of time goes below some threshold, then it may be assumed that the reliability of that particular 
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component is acceptable, and it can be released. From some perspectives, software can have 
faults, and if no failures manifest during test and usage, then the software is considered reliable. 
This could be a bad assumption for several reasons:  

• For many complex systems today, the environment and operational usage of a 
software system in the field evolves raising the likelihood that unexposed faults 
may result in failures in the future. 

• The number of failures is not necessarily directly related to the number of 
faults⎯for reliability, it is important to identify and remove all the faults to 
increase the reliability. 

• To find all the faults in a software component, test cases must be selected to 
probe each path through the component’s software. Usage-based tests often do 
not exercise all paths. 

• Even when the path is probed by a test case, a fault may not be exposed unless 
certain critical values are used to expose the fault; therefore, selecting 
appropriate test data is important. 
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Figure 1. Conceptual Approach 

One of the key difficulties in estimating the 
reliability is directly related to the 
“goodness” (i.e., fault-finding capability) of 
the test cases. Software reliability is 
traditionally based on some form of 
statistical testing process. It is common to 
characterize operational profiles and select 
test sets manually using some type of 
statistical process. The cost of attaining a 
statistically sound reliability measure is 
traditionally high. It is costly to develop 
enough tests and typically difficult to run all 
tests and analyze all results when it is 
done manually. As shown in Figure 2, the 
cost to achieve high levels of reliability can 
go up exponentially as the threshold gets 
closer to 100% reliability, usually 
represented by 1.0. 
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Figure 2. Reliability Cost 

Therefore, it is essential to choose a valid 
subset of tests to support reliability 
arguments. Unfortunately, the adequacy of 
manually selected tests cases can vary 
significantly. If the test sets are not 
adequate, then the reliability estimate may 
be unrealistically high because the tests 
were not effective in uncovering faults. 
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Approach 
This paper discusses an objective approach, based on the use of model-based test 
tools, to generate test data using a technique based on domain testing to select the most 
effective test values to uncover faults. Model-based test generation reduces or 
eliminates manual identification and selection of test sets to significantly reduce the cost 
and effort. It reduces or eliminates effort dedicated to the traditional approach of 
identifying and characterizing operational profiles, which can arguably be subsumed by 
models of requirements, or implementation-derived requirements. Test generation and 
automated test execution compresses the “execution time” factor in reliability measure 
calculation, which can start and proceed concurrently throughout development. 

Modeling and test generation minimize the process variation between individuals and 
organizations and provides an additional advantage of finding requirement or design 
faults. Software faults are all design faults [Storey 1996]. Software faults result from 
human error in interpreting or creating requirement or design specifications or incorrectly 
implementing the specification within a component. Tests generated from a model of the 
requirements or design provide a means for exposing a fault in the implementation, but 
the use of models and the model checking that is performed as part of the automatic test 
generation are effective in exposing requirement or design defects [Blackburn 2004b]. 
The recommended uses of the model-based testing proceed in parallel with the 
development [Blackburn 2003]. Finally, the potential for representing usage information 
(e.g., use cases, operational profiles) into models that can be used to support automated 
model-based testing has been demonstrated [McCabe 2002]. 

Scope 
This paper discusses an approach to generate test cases that provide a more objective 
basis for estimating the reliability of a software component or system. The approach is 
based on using test suites derived by domain and subdomain-based test generation 
techniques that are associated with the requirements or implementation-derived 
requirements of a software-intensive system. The paper discusses the following: 

• Why the domain-based tests are the minimal set of tests necessary for 
full coverage of the paths through a software implementation 

• Why this coverage provides an objectively arguable minimal set of tests 
• The test results effectiveness from an existing Consortium system where 

the model-based results were compared to actual usage-based test 
results 

• The results of an experiment that has shown that domain-based tests with 
full code coverage are significantly smaller in size than statistical test sets 

• Why full-coverage, domain-based testing is the software domain 
equivalent to infinite test time in the electrical or mechanical domains. 

The model-based tools discussed in this paper are part of the integrated environment 
generically referred to as the Test Automation Framework (TAF) that integrates 
government and commercially available model development and test generation tools. 
One of the latest additions to TAF integrates the DOORS requirement management tool 
with the T-VEC Tabular Modeler (TTM) that supports the Software Cost Reduction 



SPC-2004010-MC Version 1.0 March 2005 

 5 of 24 

(SCR) method [Heitmeyer 1996] for requirement modeling. DOORS integrates also with 
Simulink, which supports design-based models, and TAF integrates requirement models 
with design models to provide full traceability from the requirements source to the 
generated tests, as reflected in Figure 3. 

SimulinkSimulink

T-VEC SystemTTM/SCR

Design Capture
Simulation
Code Generation

Static Model Analysis
Test Generation
Coverage Analysis
Test Driver Generation
Test Results Analysis

Requirements Capture
Bridge From Informal Requirements to 

Formal Design

Simulink
Tester

Simulink
Tester

Requirements/Design Capture
Captured Model Translation

DOORS

 
Figure 3. TAF Integrated Environment 

Audience and Benefits 
The audience for this deliverable consists of member companies that are interested in 
an approach for objectively predicting software reliability through a systematic approach 
to software testing, based on models. The paper provides information on how to better 
leverage testing results to support a more systematic approach to predictable reliability. 
Given the cost and time constraints of today’s competitive market, the effort required to 
support requirement-driven, test-set selection supports early estimation and better 
prediction of the time required to achieve predictable reliability. Organizations 
considering the use of model-based testing are provided with additional arguments 
supporting reliability estimation, in addition to information on how the test sets will 
support requirement-to-test traceability, which is often a requirement in high-assurance 
systems, with the benefit of reduced cost of maintainability.  

A key benefit is that the proposed approach supports nontime-based reliability 
estimation. Simply stated, once tests are created and executed for every path of the 
software component associated with a modeled requirement, the reliability measure is 
essentially equivalent to infinite time models related to hardware and mechanical 
devices. 

Key topics covered by this report include: 

• Context and definitions associated with software reliability (See Context 
and Definitions) 

• Key issues related to test data effectiveness and two examples that 
illustrate the impact on reliability (See Test Data Effectiveness) 

• Technical details describing fault-finding effectiveness of a model-based 
test generation approach that subsumes domain-based test selection 
(See Technical Details) 
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• Experiment details that could be used to test other potential approaches 
(See Experimental Details) 

• Summary and some other potential benefits (See Summary and 
Conclusions) 

Context and Definitions 

Definitions 
Reliability is an attribute of dependability as shown in Figure 4. Dependability is a 
collective term subsuming the notions of reliability, availability, safety, confidentiality, 
integrity, maintainability, and security  [Laprie 1984]. The means to achieve it are based 
on fault prevention, fault tolerance, fault removal, and fault forecasting to avoid threats. A 
system is completely dependable if it never fails. A failure results from a fault. A fault is 
caused by a human that makes an error in the specification (i.e., requirement or design) 
or implementation of system artifacts. There are many categories of faults⎯for example, 
a design fault occurs if a requirement is represented incorrectly in the system. (For more 
information on other facets of dependability see Guidance for Achieving Mission 
Assurance in Software-Intensive Systems [Blackburn 2004a]). 

 

Attributes

Reliability
Availability
Safety
Confidentiality
Integrity
Maintainability
Security

Dependability Means

Fault Prevention
Fault Tolerance
Fault Removal
Fault Forecasting

Threats
Faults
Errors
Failures  

Figure 4. The Dependability Tree [AMSD 2003] 
Reliability, is the probability that software will not cause the failure of a system for a 
specified time under specified conditions. The probability is a function of the inputs to 
and use of the system, as well as a function of the existence of faults in the software. 
The inputs to the system determine whether existing faults, if any, are encountered 
[IEEE 1988]. Highly reliable systems are used in situations in which repair cannot take 
place (e.g., spacecraft) or in which the computer is performing a critical function for 
which even the small amount of time lost because of repairs cannot be tolerated (e.g., 
flight-control computers). 

Availability is the intuitive sense of reliability. A system is available if it is able to 
perform its intended function at the moment the function is required. Formally, the 
availability of a system as a function of time is the probability that the system is 
operational at that instant of time. Availability is frequently used as a figure of merit in 
systems for which service can be delayed or denied for short periods without serious 
consequences. 
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Safety is the absence of catastrophic consequences on the user(s) and the 
environment. 

Confidentiality is the absence of unauthorized disclosure of information. 

Integrity is the absence of improper system alterations. 

Maintainability is the ability to undergo repairs and evolutions. 

Security is the absence of unauthorized access to, or handling of, system state and 
relates to availability, confidentiality, and integrity. 

Organizations must use an engineering approach to satisfy these dependability 
properties by avoiding faults in the requirements, design, and implementation of the 
target system. Figure 5 shows a taxonomy to relate the engineering approaches for fault 
avoidance [Lyu 1995]. The approaches include fault prevention, fault removal, fault 
tolerance, and fault forecasting. The types of faults that are relevant to software primarily 
include design, interaction, and malicious logic faults. 

Reliability

Fault Prevention

Fault Removal

Fault
Tolerance

Fault
Forecasting

Faults
• Physical
• Transient
• Intermittent
• Design
• Interaction
• Malicious Logic
• Intrusion

Faults
• Physical
• Transient
• Intermittent
• Design
• Interaction
• Malicious Logic
• Intrusion

 
Figure 5. Fault Taxonomy 

Software Reliability Models 
Reliability analysis attempts to estimate the probability of losing a function as a result of 
component failures. Reliability analysis typically uses physical component models 
characterized by failure-rate statistics, where the goal of the analysis is to calculate 
system-level failure rates for selected functionalities and to determine which component 
faults contribute to the loss of the selected functionalities. A number of software reliability 
models have been proposed for assessing the reliability of a software system, some 
based on the time domain and other based on the data domain [Gokhale 1996].  

Time-domain models represent the underlying failure process of the software under 
consideration and use the observed failure history as a guideline in order to estimate the 
residual number of faults in the software and the test time required to detect them. The 
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time-domain models are classified into homogeneous Markov,1 nonhomogeneous 
Markov, and semi-Markov models.  

There is debate on the validity of time-related software reliability models because of 
problems when the software’s environment changes. This particularly affects commercial 
off-the-shelf (COTS) and Software of Unknown Pedigree (SOUP) because a failure may 
occur for a first time in a new environment if the software does not exactly match the 
intended functionality [Advantage1 2002]⎯for example, the Ariane 5 failure. Such 
failures make any time factor irrelevant. Thus, time-related reliability models for COTS or 
SOUP are difficult to justify for high-assurance (e.g., safety-critical) systems, and 
additional evidence or approaches are required [Caseley 2003]. 

Data-domain models are based on the philosophy that if the set of all input 
combinations to a computer program are identified, an estimate of the program’s 
reliability can be obtained by exercising all the input combinations and observing the 
outcomes. In practice, it is not feasible to identify the set of all input combinations, and 
this approach is reduced to a method of selecting sample data sets representative of the 
expected operational usage for the purpose of estimating the residual number of faults in 
the software product under consideration. Data-domain models can be further classified 
as: 

• Fault-seeding models. The software product, which has an unknown 
number of indigenous faults, is seeded with a known number of faults and 
subjected to rigorous testing. An estimate of the actual number of 
indigenous faults is then obtained by determining the ratio of discovered 
seeded faults to discovered actual faults. (More information on this 
approach is provided in the section on Experimental Details.) 

• Input-domain models. In the case of input-domain models, the reliability 
of the software is measured by exercising the software with a set of 
randomly chosen inputs. The ratio of the number of inputs that result in 
successful execution to the total number of inputs gives an estimate of 
the reliability of the software product.  

Test Data Effectiveness 
This section provides two examples to illustrate the importance of test data selection as 
it relates to reliability estimates. For data-domain and time-domain models, the 
adequacy of the tests is critical to the reliability estimate. Although the typical approach 
referenced in the context of software reliability models is to generate test cases by 
selecting operations randomly (i.e., statistically) according to the operational profile and 
input states randomly with their domain [Musa 1993], this paper proposes to leverage 
automated tools to provide domain-based test data that is more effective than 
statistically selected data. 

                                                 

1 Andrey Markov was the Russian mathematician who helped to develop the theory of stochastic 
processes, especially those called Markov chains, which are based on the study of the probability 
of mutually dependent events. 
[http://www.britannica.com/search?query=Markov+&submit=Find&source=MWTEXT] 
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Example 1 
Table 1 shows the result of an experiment that compares the effectiveness of domain-
based tests generated by TAF/T-VEC versus statistically based (random) tests. (See 
Experimental Details for the details of the experiment.) There were two different versions 
of the base program, version 1 with 39 lines of code and 17 decisions that was seeded 
with 112 faults, and version 2 with 42 lines of code and 19 decisions was seeded with 
117 faults. Based on the effectiveness score that is derived from computing the number 
of seeded faults that were exposed by the test cases with respect to the total number of 
seeded faults, the two model-based test vector sets had scores of 98.2 % and 99.1 % as 
compared to the respective scores of 46.4 % and 62.4 % for the statistically-generated 
test sets. The model-based test sets provided 100 % decision coverage, and the 
statistically generated test sets resulted in 89.4 % and 90.6 % coverage, even though 
the effectiveness scores were low. Even with nearly twice as many statistically based 
test cases and relatively high decision coverage (e.g., path coverage), the results 
suggest that the approach that uses domain-based test data is critical to uncovering 
faults. 

Table 1. Experiment Data 

Experiment Parameters
Lines of Code
Decisions
Test Selection Approach Domain Statistical Domain Statistical
Test Cases 97 176 105 208
Seeded faults 112 112 117 117
Exposed faults 110 52 116 73
Complete Decision Coverage 100.0% 89.4% 100.0% 90.6%
Effectiveness Score 98.2% 46.4% 99.1% 62.4%

17 19

Version 1 Version 2
39 42

 

Example 2 
Consider the example represented in Figure 6, which is distilled from working with a 
Consortium member. During the integration testing of two software-system components, 
test cases were selected, and data points from the input spaces were used to test the 
functionality. The test-case selection process was based on the operational usage; 
however, critical faults were not identified. The requirements for the functionality were 
later modeled using TAF, and tests were generated based on the use of domain and 
subdomain test selection principles, where test points are selected at the boundary of 
the input space. These tests resulted in 318 test cases, with 152 failures. The test cases 
generated from the model exposed faults. Analysis helped determined that the values 
generated by T-VEC, the generation component of TAF, were located at the boundaries 
or subdomain boundaries of the input space, and these particular values exposed the 
faults. The manually selected values were selected based on usage data, from data 
points within the subdomains and did not identify any faults. 
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Figure 6. Conceptual Representation of Limitation of Statistical Testing 

Testing Strategies 
Testing strategies are typically characterized as structural, that is, related directly to an 
implementation, and functional, that is, based on a specification [Howden 1980]. 
Specification-based testing, or black-box testing, relies on properties of the software that 
are captured in the functional specifications (or requirements model, including interfaces, 
possibly design and other behavioral information). The traditional functional testing 
approach is to partition the input domain into equivalence classes and select test data 
from each class [Richardson 1992].  

The following three types of errors can be made in an implementation, resulting in a fault 
[Howden 1976]: 

• A computation error occurs when the correct path through the program is 
taken, but the output is incorrect because of faults in the computation along the 
path. 

• A domain error occurs when an incorrect output is generated because the 
wrong path was executed through a program. 

• A missing-path error occurs when the implementation does not fully implement 
the requirements or design. This type of error must be identified by inspection 
rather than testing. 

[White 1980] proposed domain testing theory as a strategy for selecting test points to 
reveal domain errors. It is based on the premise that if there is no coincidental 
correctness, then test cases that localize the boundaries of domains with arbitrarily high 
precision are sufficient to test all the points in the domain. Domain testing theory is 
based on the intuitive idea that faults in the implementation are more likely to be found 
by test points chosen near appropriately defined program input and output domain 
boundaries [Tsai 1990]. 

[Beizer 1995] describes "domain testing" as an approach to select test inputs based on 
the domains (ranges) of the system inputs at or around the maximum and minimum 
values of these ranges.  Furthermore, he describes "formal specification based testing," 
which starts with the system input domains, then partitions these domains into 
subdomains based on the logic within the specification (model). Using this technique, 
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picking test input values from the subdomains verifies the logic of the application. This is 
also referred to as partitioning.  Each partition is an equivalence class that must be 
tested. 

As noted the Introduction, SRE is one of the noted approaches of software reliability 
engineering, based on identifying operational profiles (sometimes related to use-case 
testing). An operational profile is a usage model that characterizes possible scenarios of 
software use at a given level of abstraction. A random test case is a traversal of the 
usage model based on state transitions that are randomly selected from a usage 
probability distribution. The notion of a random test value is that a statistically 
independent set of values is selected from an input domain. Random test sets are a form 
of statistical testing that can be based on various non stochastic (i.e., probabilistic) and 
stochastic models. Statistical testing is based on the premise that when a population is 
too large for exhaustive study, as is the case for all possible uses of a software system, 
a statistically correct sample must be drawn from the input population [Poore 1998].  

Limits of Usage-Based Testing 
The concern with usage-based tests, like SRE, is that they seldom cover all the paths 
through the component. A path results from constraints in the requirements or design 
decisions associated with implementation-derived requirements that are implemented as 
decisions (i.e., control-flow paths) in the implementation. The constraints result in input 
subdomains associated with a path through the implementation. The complexity of 
systems today typically results in many layers of implementation-derived requirements. 
Each component has one or more paths, and each path must be tested to provide 
assurance that there are no faults. If a path is not probed by at least one test, a fault 
cannot be detected; however, full test coverage does not guarantee detection of all faults 
because the proper test inputs often are required in order to expose a fault as illustrated 
by the results shown in Example 1 and Example 2. The second problem is that the 
values selected by usage tests often are nominal values, not at or near domain or 
subdomain boundaries, where failures are more likely to be exposed. 

Technical Details 
This section uses an example to explain technical details related to test data selection 
for domains and subdomains. Although the test selection process can be performed 
manually, the number of cases and the complexity of system requirements make the 
selection of test values at the domain or subdomain boundaries a challenging manual 
task. TAF’s test generation performs domain-based test selection from a requirements 
model of the software component under test or a hierarchical model to address a 
multileveled system component. The test generation produces test points for all 
constraints in a model and can provide the equivalent of modified condition-decision-
level [MCDC] test coverage of the modeled specification. For MCDC coverage, every 
point of entry and exit in the program has been invoked at least once; every condition in 
a decision in the program has taken on all possible outcomes at least once; and each 
condition has been shown to affect that decision outcome independently. A condition is 
shown to affect a decision’s outcome independently by varying just that decision while 
holding fixed all other possible conditions. See [Hayhurst 2001] for a more in-depth 
summary of structural coverage. 
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Understanding Domains and Subdomains 
The following example explains the concepts of domain and subdomain as they support 
an objective approach to systematic test selection. The following Vertical Tracker 
example is simplified from a requirement of the Traffic and Collision Avoidance System 
(TCAS). A Vertical Tracker component would track another aircraft relative to one's 
current altitude and must maintain the tracking state. Figure 7 provides some additional 
details about the Vertical Tracker. The altitude of an aircraft is defined by a standard 
known as Gilliam Altitude, and it can range from –1,000 feet to 127,000 feet. The Own 
Aircraft is located in the center of the model. Another aircraft is considered to be 
“in_altitude_window” if it is within 2,700 feet above or below Own Aircraft. It is within the 
altitude rate limit (i.e., “rate_limit”) if it satisfies the constraint that is represented by the 
shaded area. Other requirements are related to the Vertical Tracking state as defined by 
the following:  

• The Vertical Tracker for Own Aircraft shall be in TRACKING state if Own 
Aircraft is at or above 10,000 feet in altitude, but no other aircraft is in the 
altitude window.  

• The Vertical Tracker for Own Aircraft shall be in ADVISORY state if Own 
Aircraft is at or above 10,000 feet in altitude, and another aircraft is in the 
altitude window.  

• The Vertical Tracker for Own Aircraft shall be in NOT_TRACKING state if 
Own Aircraft is less than 10,000 feet in altitude. 

As shown in Figure 7, Aircraft 1 is in the altitude window but does not meet the altitude 
rate limit; Aircraft 2 meets both constraints; and Aircraft 3 does not meet any of the 
constraints.  

2700 

-2700 

2700 2700 

-2700 -2700 

Own Aircraft

Aircraft 1

Aircraft 2

Aircraft 3

rate_limit

in_altitude_window
(alt >= -2700
AND
alt <= 2700)

 
Figure 7. Visual Representation of Vertical Tracker Constraints 

The domain is the set of values that go into a function; the domain of the input space for 
aircraft altitude can range from –1,000 to 127,000 feet. For two aircraft, the input space 
is defined by the cross-product of Own Aircraft’s altitude and the nearest aircraft’s 
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altitude (i.e., “Nearest_altitude”), and both have the same input domain as reflected in 
Figure 8. For this example, Aircraft 2 is the Nearest_altitude, as shown in Figure 7. 

Own_altitude

(12700,-1000)

(12700, 12700)

(-1000,-1000)

(-1000,12700)

Domains:
Own_altitude integer range [-1000..127000]
Nearest_altitude integer range [-1000..127000]

Nearest_altitude  
Figure 8. Input Domains 

Another requirement for the Vertical Tracker is that if the Own Aircraft is above 10,000 
feet, then it is in tracking mode. This requirement imposes a constraint on the input 
space that partitions the domain into two subdomains as reflected by Figure 9, labeled 
TRACKING MODE and NOT TRACKING MODE. For testing purposes, it is important to 
have at least one test point for each subdomain of a component’s input space. Ideally, 
the test points should be selected near the boundaries of the domain. In this case, some 
of the critical points for the boundary defined by the constraint occur where the 
Own_altitude is less than 10,000 (e.g., –1,000, 9,999) and greater than or equal to 
10,000 (e.g., 10,000, 10,001, 12,700). 

 

Constraint:
If Own_altitude >= 10000 then TRACKING MODE
Else NOT TRACKING MODE

TRACKING MODE

NOT TRACKING MODE

Own_altitude

(12700,-1000)

(12700, 12700)

(-1000,-1000)

(-1000,12700)

Nearest_altitude  
Figure 9. Partition of Domain Into Subdomains 

When the Own Aircraft is in tracking mode (i.e., Own_altitude >= 10,000) and another 
aircraft is within 2,700 feet above or below, then the aircraft goes into an advisory mode. 
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This creates another subdomain, labeled ADVISORY, with different boundaries as 
reflected in Figure 10. Figure 11 shows test points overlaid on an enlarged image of the 
ADVISORY subdomain for test cases 11, 13, and 18 that were generated by TAF. 
Notice that the values selected are at or near the boundaries of the subdomain. These 
are the test values that are likely to uncover faults. 

  

Constraint:
If Own_altitude in TRACKING MODE 
AND abs(Own_altitude – Nearest_altitude) <= 2700 

then ADVISORY

Nearest_altitude
(12700,-1000)
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NOT TRACKING MODE
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Figure 10. Constraints for Advisory Mode 

 

7300

10000
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Figure 11. Sample Test Points 

Domain Error Coverage 

Subdomains are introduced when a requirement or design constraint is specified. These 
constraints result in decisions that must be implemented, and those decisions manifest 
in different code paths. The constraints introduce new boundaries as shown in Figure 
10, which are associated with the logically AND’ed set of conditions for that constraint, 
for example: 
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The Vertical Tracker is in ADVISORY mode when Own Altitude >= 10,000 AND  

abs(Own Altitude – Nearest Altitude) <= 2,700 

In T-VEC, this is call a domain convergence path (DCP), and the test generator selects 
input test values for the borders of the subdomain. A border is defined by evaluating the 
predicates (i.e., individual constraints) of a DCP for a set of input values. Test points for 
numeric objects are selected for both upper and lower domain boundary values as 
reflected in Figure 11. This results in test points for subdomain borders based on all low-
bound values and high-bound input values that satisfy the DCP predicates.  

Domain errors are associated with the requirements and occur if the constraints are not 
satisfiable. If domain errors do not exist in the modeled requirement, the selection of 
extreme values provides test points to detect computation errors (e.g., overflow, 
underflow, or incorrect calculations). Intuitively, this domain testing mechanism provides 
confidence that every path of the implementation is correct with respect to every DCP 
and function of a component’s requirement or design model. 

Table 2 shows a few of the test points that should be considered for the Vertical Tracker.  
These values are near the domain or subdomain boundaries. 

Table 2. Test Points for Vertical Tracker State 
 # State nearest_altitude own_altitude

10 ADVISORY 127000 126999

9 ADVISORY 127000 127000

8 ADVISORY 10001 10000

7 ADVISORY 7500 10000

6 TRACKING 127000 124499

5 TRACKING 124499 127000

4 TRACKING 12501 10000

3 TRACKING -1000 10000

2 NOT_TRACKING -1000 9999

1 NOT_TRACKING 127000 -1000

 

Computation Error Coverage 

Some inputs to functions are not constrained by the DCP predicates. For each test point 
derived from DCP predicates, there are additional test points derived for unconstrained 
inputs not referenced in the DCP. Test values are selected based on the domain 
boundary value combinations (e.g., low bound and high bound for numeric objects and 
sets for enumerated variables). By selecting the extreme value combinations, there is a 
possibility to detect computation errors in the output calculation. This test selection 
strategy is used to detect computation errors or show that unconstrained inputs do not 
affect the output for a program path.  
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Path Combinations in Hierarchical Systems 
Test effectiveness in hierarchical systems is more challenging because paths are 
threaded together through hierarchically related components. A path refers to one 
logically AND’ed set of constraints as discussed for subdomains, but with hierarchical 
paths, it includes logically AND’ing conditions from hierarchically related components. 
Usage data is not likely to cover all paths related to the implementation or the 
requirements. There are two key issues related to selecting effective test data for 
hierarchically related components: 

• Selecting test data to cover all combinations of paths requires a 
combinatorial larger number of test cases. 

• Selecting test values to traverse all paths is numerically challenging, 
requiring that constraints associated with the paths be analyzed to select 
the appropriate test data. 

To generate tests for every path throughout a hierarchy of software components can be 
more effort-intensive and costly, but the cost and effort to minimally cover each path 
through all components can be minimized if testing is performed on a layer-by-layer 
basis. Consider the example shown in Figure 12: 

Component C calls C.1, and C.1 calls C.1.1 and C.1.2. The exclusive paths in each 
component are: 

  — C     = 2 paths 
  — C.1   = 4 paths 
  — C.1.1 = 4 paths 
  — C.1.2 = 3 paths 

C

C.1

C.1.2C.1.1

Testing here
demands

2 * 4 * 4 * 3 = 96 tests

Testing at all levels 
takes

2 + 4 + 4 + 3 = 13 
tests

 
Figure 12. Example Illustrating Paths and Test Coverage 

To cover all the paths from the top-level component (C) would require 96 total tests. The 
required number of tests is 13 if a level-by-level approach is used to test each path in 
each component. The effort becomes exponential if a tester attempts to test all 
combinations of paths from the higher level, for example through a graphical user 
interface (GUI) represented by component C. When testing on a level-by-level basis, 
tests must be constructed to cover only the conditions associated with the paths of that 
component, which also can demonstrate that the integration within that level operates 
properly. Usage-based testing seldom occurs on a level-by-level basis, and it is unlikely 
that 96 tests will be performed. Therefore, the reliability estimate should take this into 
consideration.  
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TAF supports hierarchical relationships. In generating test vectors for a hierarchy of 
models, as represented in Figure 13, the test generator selects test cases for the DCP 
paths of the high-level components (e.g., Grandparent) without regenerating all the test 
vectors for each referenced lower-level subsystem. The test vector generator bases the 
test selection on the DCPs for the upper-level subsystem (Grandparent), not the 
combination of DCPs for the parent and children subsystems. This mechanism 
precludes the combinatorial explosion associated with tests generated from the 
combination of constraints in a hierarchy of subsystems as represented in Figure 12.  

Child
DCP 1
DCP 2

…
DCP k

Parent
DCP 1
DCP 2

…
DCP j

Parent
DCP 1
DCP 2

…
DCP j

Grandparent
DCP 1
DCP 2

…
DCP i

Grandparent
DCP 1
DCP 2

…
DCP i

 
Figure 13. Hierarchical Subsystem Relationships 

This level-by-level process provides an efficient means for performing unit, software-
integration, and system-level testing. For additional information on this recommended 
process, see Section 4 of Guidance for Achieving Mission Assurance in Software-
Intensive Systems [Blackburn 2004a]. This report recommends a recursive process for 
specifying functional requirements, design, and architectures combined with a 
continuous and layered approach to verification so that requirement and design artifacts 
are verified and defects are contained to their phase of creation, while systematically 
applying verification processes at each layer of the system.  

Experimental Details 
This section describes an experiment to test the hypothesis that the model-based testing 
approach using domain-based test selection is more effective at finding faults than 
statistically based test-set selection. The experiment compares the TAF/T-VEC model-
based test generator with a statistically based test generator and uses a fault-seeding 
technique, referred to as mutation testing, with path-coverage analysis techniques to 
assess the adequacy of the generated test sets. The results, shown in Table 1, suggest 
that the evaluated model-based test generator is better than 98 % effective at finding 
program faults and is as much as 51 % more effective than a random number test-set 
generator with half the number of test cases. The implications of the results are that the 
model-based test generation approach provides a more systematic approach to test 
selection that can support better reliability estimation in a predictable set of time that is 
directly related to the modeled requirements. Another key finding is that the statistically 
selected test cases had a relatively high degree of decision coverage, but that did not 
make them effective in finding the seeded bug. This supports the argument that it is 
important to select critical values to uncover faults. 

Mutation testing is a fault-based testing technique that has been effective in assessing 
the adequacy of a test set for a program [Hamlet 1977; DeMillo 1978]. For any program, 
mutations of a base program (referred to as mutants) are generated through the use of 
mutation operators. A mutation operator describes a set of syntactic changes based on 
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program language constructs. Each mutant contains one fault. The adequacy of a test 
set can be measured by its ability to detect the mutants derived from the base program.  
A mutation score for a test set is the percentage of nonequivalent mutants that are 
killed (i.e., detected) by a test set. 

Mutation testing has been shown to be effective; however, because the number of 
mutants for real-world programs can grow large, it is typically expensive to use. This 
experiment used selective mutants [Offutt 1994]. Selective mutants use a subset of the 
standard mutation operators and appear to be effective in generating minimally sized, 
adequate test sets for finding faults in programs.  

The coverage criterion applied to the subjects was decision coverage: every point of 
entry and exit in the program has been invoked at least once, and every decision in the 
program has taken on all possible outcomes at least once [RTCA 1992]. The base 
programs were instrumented so that every decision and every statement guarded by a 
decision had a statement to record that a path through the program had been executed. 
The instrumented statements also were included automatically when the mutants were 
generated but were not modified by the mutant generator. The test set was run through 
a mutant, and those instrumented locations that were not executed were recorded 
programmatically. 

Figure 14 shows the relationships between the elements of the design. The design uses 
a base program that is a correct implementation for the requirements. The specification 
was modeled using TAF. Test vectors were generated from the model using T-VEC. The 
base program executes correctly with respect to the requirements. For this experiment, 
correct means that the:  

• Actual output values must equal the expected output values for all test 
inputs. 

• Test sets must satisfy complete program coverage based on a coverage 
criterion. 

 

Model

Test Vector 
Generator

Random Test 
Generator

Test
Vectors

Mutant
1Mutant

2 Mutant
n

. . .
Mutations of
base programs

Test
Cases

Coverage criteria

Execution
Environment

Actual outputs

Coverage results

Base
Program

Mutant 
Generator

 
Figure 14. Experimental Design 

The base program was mutated based on the selective mutants. The selective mutant 
operators summarized in Table 3 were applied to those constructs used in two different 
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base program versions. The mutations resulted in 112 mutants for version 1 and 117 
mutants for version 2. The test sets, both generated and random, were executed by 
each mutant, and the actual output and coverage results were recorded. 

Table 3. Select Mutant Operators 
 

Function Mutations Applied to Base Program Subjects

Absolute value insertion
Each arithmetic expression to take on the value 0, a positive value, 
and a negative value

Arithmetic operator replacement Replaces every syntactically legal operator ('+','-','*','/')
Logical connector replacement Replaces each logical connector (AND and OR)

Relational operator replacement
Replaces relational operators with other syntactically legal relational 
operators ('<=', '>=', '<', '>', '!=')

Unary operator insertion
Inserts unary operators in front of expressions (replaces a '-' with a 
'+', or inserts a '-' in front of expressions)  

Summary and Conclusions 
This paper discusses a systematic approach to test-case definition that should provide a 
more objective basis for estimating the reliability of a software component. 
Recommended practices to reliability estimation and prediction often are based on test 
selection guided by operational profiles, but operational profiles seldom cover all the 
paths through the component. A path results from requirement constraints or design 
decisions that are implemented as decisions in the implementation. The requirement 
constraints manifest in paths through the implementation. The complexity of systems 
today typically results in many layers of implementation-derived requirements. Each 
component has one or more paths. To maximize the confidence in the reliability 
estimates, each path must have one associated test to provide assurance that there are 
no faults in the decision or computations of that path. If a path is not probed by at least 
one test, a fault cannot be detected. However, experiment data presented in this paper 
shows that full test coverage over all paths does not guarantee detection of all faults 
because the proper test inputs often are critical in order to expose a fault. Recognizing 
that the assumption for software reliability models is to generate test cases by selecting 
operations randomly (i.e., statistically) according to the operational profile and input 
states randomly with their domain, this paper recommends the use of test data values 
generated from requirement models that localize the test values at or near the domain 
and subdomains boundaries, where faults are more likely to be exposed. 

Benefits 
The benefits of this approach over traditional approaches to test-case selection to 
support reliability estimation include the following: 

• Reduces or eliminates the activity of manually identifying and selecting 
minimally valid test sets 

• Compresses the “execution time” factor in reliability measure calculation 
• Reduces or eliminates the effort dedicated to identifying and 

characterizing operational profiles that can be subsumed by models 
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• Eliminates manual determination of operational profiles and associated 
test suites by subsuming them with domain- and subdomain-based tests 

• Supports early estimation and better prediction of the time and effort 
required to achieve predictable reliability, with the added benefit that the 
test sets will support requirement-to-test traceability, which is often a 
requirement in high-assurance systems 

 

Since 1996, the Systems and Software Consortium, Inc. (SSCI) has worked with 
Consortium members and continues to see increased adoption of model-based testing 
tools. Model-based testing has many benefits, including better quality requirements, 
better tests, and faster test design. Modeling and test generation minimize the process 
variation between individuals and organizations and provide additional capabilities to 
address software reliability with additional tools and side benefits. Tests generated from 
a model of the requirements or design provide a means for exposing a fault in the 
implementation, but the use of models and the model checking that is performed as part 
of the automatic test generation are effective in exposing requirement or design defects.   

With the recent integration of requirement management tools with SSCI’s requirement 
and design-based modeling and test generation tools, the tools support full requirement-
to-test traceability. Some of the key benefits derived through the traceability process 
help to foster organizational adoption of the model-based testing tools that provide the 
benefits of the systematic test generation that might be more effective in helping 
organizations quantify their reliability earlier in a nontime-based approach to reliability 
estimation as they directly relate their reliability estimates in the context of requirement 
coverage and completeness. 
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History and Technical Details of TAF
The core capabilities of this approach were developed in the late 1980s and proven through use in 
support of Federal Aviation Administration (FAA) certifications for flight-critical avionics systems. The 
approach supports requirement-based test coverage mandated by the FAA with significant life-cycle 
cost savings. The approach and tools have been used for modeling and testing system, software 
integration, software unit, and hardware/software integration functionality. It has been applied to critical 
applications in medical and aerospace, supporting automated test-driver generation in most languages 
(e.g., C, C++, Java, Ada, Perl, PL/1, Structured Query Language (SQL), as well as proprietary 
languages, and test environments. 

TAF model translators convert various modeling notations into a T-VEC specification [Blackburn 1998]. 
T-VEC compiles the specification and derives the partitions for all subdomains associated with the 
modeled functionality. T-VEC selects test data for subdomains of an input space based on the 
constraints of the model that define the subdomain. A set of test vectors is generated for each logically 
AND’ed set of constraints, referred to as the DCPs. The underlying specification language of the TAF 
test generator has continually evolved to support an extensive set of logical and mathematical 
operators that extend the standard arithmetic operators (e.g., trigonometric, intrinsic, integrators, 
quantization, matrix operations). The modeling language uses functions or other forms of model 
references to support model composition that is required to scale to large and complex applications. 
Test generation support is provided for models that are composed hierarchically or sequentially. 

T-VEC supports model checking. Model checking is a “lightweight” form of a formal method that 
checks the truth or falsity of modeled specifications for each DCP. A simple example is a logical 
contradiction, where (x>0) & (x<0). TAF performs model checking on simple models as well as 
hierarchically composed models and generates test vectors as a by-product. Test selection for higher-
level subsystems typically depends on constraints or functions of lower-level subsystems. References 
from higher-level to lower-level subsystems must be supported by at least one DCP in a lower-level 
subsystem. If there is no DCP thread from a higher-level subsystem to a lower-level subsystem, this 
proves that there is no input space associated with the model (i.e., the input space for the DCP is null). 
When generating test vectors, the inputs are selected from the inputs, but if the input space is null, no 
tests can be selected; this is an invalid specification within the model. 

Child
DCP 1
DCP 2

…
DCP k

Parent
DCP 1
DCP 2

…
DCP j

Parent
DCP 1
DCP 2

…
DCP j

Grandparent
DCP 1
DCP 2

…
DCP i

Grandparent
DCP 1
DCP 2

…
DCP i

 

This model-checking capability also supports proof-of-safety properties. Model assertions representing 
safety properties can be specified. During the test generation process, if test vectors are generated 
from a safety property that is associated with a model, the test vector identifies a DCP thread through 
the model, where the safety property is violated. Other checks, such as mathematical errors or 
potential errors (e.g., division by a domain that spans zero) are flagged as being a potential divide-by-
zero hazard, or range overflow/underflow (i.e., variables which at some point in the mode have values 
outside the specified bounds of the type of that variable). 
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About the Systems and Software Consortium, Inc. 
The Systems and Software Consortium, Inc. (SSCI) enables its members to solve 
complex challenges on large, software-intensive, network-centric systems. SSCI 
provides leadership and business-advancing intelligence on standards and trends, to 
help our members enhance their business performance. 

SSCI is a world-class leader in the application of tools and processes to support 
software and systems engineering and design management, integration, and mission 
assurance. 

 
 

About the Particular Program 
Members with general questions or comments on any of the topics in this paper or related 
topics, or members interested in applying TAF with SSCI assistance, should contact the 
author or their member account director (see 
http://www.systemsandsoftware.org/pub/keycontacts.asp). 

For more on TAF, see SSCI’s TAF website at 
http://www.systemsandsoftware.org/pub/taf/testing.html 

SSCI is interested in your comments and suggestions.  
Please send your thoughts and insights to 

blackburn@systemsandsoftware.org. 


