
T-VEC® is a registered trademark of T-VEC Technologies, Inc.
UNIX® is a registered trademark of The Open Group.
Windows® is a registered trademark of Microsoft Corporation in the United States and other countries.
DOORS® I is a registered trademark of Telelogic, Inc.
Simulink® is a registered trademark of The Mathworks, Inc.

Copyright © 2005, Systems and Software Consortium, Inc. and T-VEC Technologies, Inc. All rights reserved. This document is
proprietary property of the Systems and Software Consortium, Inc. The contents of this document shall be kept confidential pursuant
to the terms of the Membership Rules, as amended from time to time, of the Systems and Software Consortium, Inc. This document
shall only be disseminated in accordance with the terms and conditions of those Rules. All complete or partial copies of this
document must contain a copy of this statement.

Objective Measures for V&V and
Software Reliability

Mark R. Blackburn, Ph.D.
Systems and Software Consortium, Inc.

 blackburn@systemsandsoftware.org
(703) 742-7136

Abstract Contents

Consortium members are interested in various
aspects of software reliability, including estimating,
predicting, measuring, and using approaches that
reduce the effort to achieve more predictable levels
of reliability in the systems that they produce. This
paper discusses an approach proposed with a
Consortium member to derive tests from
requirement models that can provide an objective
basis for predicting software reliability while
reducing the cost. The benefits of this approach
over traditional approaches to test-case selection
support early reliability estimation, while reducing
effort to manually identify and select valid test sets,
compressing the “execution time” factor in reliability
measure calculation. An added benefit is that the
test sets will support requirement-to-test traceability,
which is often a requirement in high-assurance
systems. Finally, this paper argues that domain-
based testing is the software domain equivalent to
infinite test time in the electrical or mechanical
domains.

Introduction .. 1
Context and Definitions...................... 6
Test Data Effectiveness 8

Technical Details 11

Experimental 17
Summary and Conclusions 19
References 20
History and Technical Details of TAF23
About the Systems and Software
Consortium
About the Particular Program........... 24

SPC-2004010-MC Version 1.0 March 2005

 2 of 24

Acknowledgments
The author greatly appreciates his colleagues in the member companies and the Consortium
that have provided comments on early drafts of this document. In particular, he would like to
thank the following people for their thoughtful comments, suggestions, and insights:

• Dale Borja, United Defense

• Rich McCabe, Systems and Software Consortium, Inc.

• Chris Miller, Systems and Software Consortium, Inc.

• Ed Safford, Lockheed Martin

• Mike Siok, Lockheed Martin

• Gerry Ourada, Lockheed Martin

Introduction
Attaining high reliability of software is ever more challenging as system complexity continues to
increase. Arguably, the variations in the software development process can be significant from
organization to organization as well as person to person. One aspect of software reliability
attempts to numerically quantify the uncertainty in the production of software using models to
predict reliability and fault content within the software system. Software fault forecasting relies
often on measurement data that is derived primarily from testing to predict the reliability of a
system. Testing, combined with fault measurement, often is used to calculate software reliability
based on different reliability models.

Software reliability engineering (SRE) [Musa 1993] is a popular approach to guide the testing to
support predictable reliability and a recommended practice [Schneidewind 2004]. SRE uses
operational profiles to characterize how a system will be used. Using an operational profile to
guide testing provides a basis to stop testing after the most-used operations have received the
most testing for the given test time. Critics of operational testing cite many reasons why
systematic testing is superior [Grottke 2001]. Another problem with reliability testing and
prediction is that the result is specific to a particular operational profile [Bishop 2002].
Operational profiles do not necessarily characterize all the requirement, design, or
implementation paths through a component, and if a path with a fault is never probed, the fault
will not be exposed, thereby providing a false estimate of reliability. Other studies indicate that
only a small minority of industrial organizations use operational testing [Frankl 1998]. Many
organizations use available fault and historical data with reliability models to estimate reliability.

Background
Figure 1 provides a good place to start the discussion related to test data and reliability
estimation. Conceptually, if an organization captures the failures per unit of time throughout the
development and test phases, and at the point where the number of failures during that period
of time goes below some threshold, then it may be assumed that the reliability of that particular

SPC-2004010-MC Version 1.0 March 2005

 3 of 24

component is acceptable, and it can be released. From some perspectives, software can have
faults, and if no failures manifest during test and usage, then the software is considered reliable.
This could be a bad assumption for several reasons:

• For many complex systems today, the environment and operational usage of a
software system in the field evolves raising the likelihood that unexposed faults
may result in failures in the future.

• The number of failures is not necessarily directly related to the number of
faults⎯for reliability, it is important to identify and remove all the faults to
increase the reliability.

• To find all the faults in a software component, test cases must be selected to
probe each path through the component’s software. Usage-based tests often do
not exercise all paths.

• Even when the path is probed by a test case, a fault may not be exposed unless
certain critical values are used to expose the fault; therefore, selecting
appropriate test data is important.

F
A
I
L
U
R
E
S

Operational/Test Time

Threshold

Figure 1. Conceptual Approach

One of the key difficulties in estimating the
reliability is directly related to the
“goodness” (i.e., fault-finding capability) of
the test cases. Software reliability is
traditionally based on some form of
statistical testing process. It is common to
characterize operational profiles and select
test sets manually using some type of
statistical process. The cost of attaining a
statistically sound reliability measure is
traditionally high. It is costly to develop
enough tests and typically difficult to run all
tests and analyze all results when it is
done manually. As shown in Figure 2, the
cost to achieve high levels of reliability can
go up exponentially as the threshold gets
closer to 100% reliability, usually
represented by 1.0.

R
E
L
I
A
B
I
L
I
T
Y

Test Development Cost

1.0

Threshold

Figure 2. Reliability Cost

Therefore, it is essential to choose a valid
subset of tests to support reliability
arguments. Unfortunately, the adequacy of
manually selected tests cases can vary
significantly. If the test sets are not
adequate, then the reliability estimate may
be unrealistically high because the tests
were not effective in uncovering faults.

SPC-2004010-MC Version 1.0 March 2005

 4 of 24

Approach
This paper discusses an objective approach, based on the use of model-based test
tools, to generate test data using a technique based on domain testing to select the most
effective test values to uncover faults. Model-based test generation reduces or
eliminates manual identification and selection of test sets to significantly reduce the cost
and effort. It reduces or eliminates effort dedicated to the traditional approach of
identifying and characterizing operational profiles, which can arguably be subsumed by
models of requirements, or implementation-derived requirements. Test generation and
automated test execution compresses the “execution time” factor in reliability measure
calculation, which can start and proceed concurrently throughout development.

Modeling and test generation minimize the process variation between individuals and
organizations and provides an additional advantage of finding requirement or design
faults. Software faults are all design faults [Storey 1996]. Software faults result from
human error in interpreting or creating requirement or design specifications or incorrectly
implementing the specification within a component. Tests generated from a model of the
requirements or design provide a means for exposing a fault in the implementation, but
the use of models and the model checking that is performed as part of the automatic test
generation are effective in exposing requirement or design defects [Blackburn 2004b].
The recommended uses of the model-based testing proceed in parallel with the
development [Blackburn 2003]. Finally, the potential for representing usage information
(e.g., use cases, operational profiles) into models that can be used to support automated
model-based testing has been demonstrated [McCabe 2002].

Scope
This paper discusses an approach to generate test cases that provide a more objective
basis for estimating the reliability of a software component or system. The approach is
based on using test suites derived by domain and subdomain-based test generation
techniques that are associated with the requirements or implementation-derived
requirements of a software-intensive system. The paper discusses the following:

• Why the domain-based tests are the minimal set of tests necessary for
full coverage of the paths through a software implementation

• Why this coverage provides an objectively arguable minimal set of tests
• The test results effectiveness from an existing Consortium system where

the model-based results were compared to actual usage-based test
results

• The results of an experiment that has shown that domain-based tests with
full code coverage are significantly smaller in size than statistical test sets

• Why full-coverage, domain-based testing is the software domain
equivalent to infinite test time in the electrical or mechanical domains.

The model-based tools discussed in this paper are part of the integrated environment
generically referred to as the Test Automation Framework (TAF) that integrates
government and commercially available model development and test generation tools.
One of the latest additions to TAF integrates the DOORS requirement management tool
with the T-VEC Tabular Modeler (TTM) that supports the Software Cost Reduction

SPC-2004010-MC Version 1.0 March 2005

 5 of 24

(SCR) method [Heitmeyer 1996] for requirement modeling. DOORS integrates also with
Simulink, which supports design-based models, and TAF integrates requirement models
with design models to provide full traceability from the requirements source to the
generated tests, as reflected in Figure 3.

SimulinkSimulink

T-VEC SystemTTM/SCR

Design Capture
Simulation
Code Generation

Static Model Analysis
Test Generation
Coverage Analysis
Test Driver Generation
Test Results Analysis

Requirements Capture
Bridge From Informal Requirements to

Formal Design

Simulink
Tester

Simulink
Tester

Requirements/Design Capture
Captured Model Translation

DOORS

Figure 3. TAF Integrated Environment

Audience and Benefits
The audience for this deliverable consists of member companies that are interested in
an approach for objectively predicting software reliability through a systematic approach
to software testing, based on models. The paper provides information on how to better
leverage testing results to support a more systematic approach to predictable reliability.
Given the cost and time constraints of today’s competitive market, the effort required to
support requirement-driven, test-set selection supports early estimation and better
prediction of the time required to achieve predictable reliability. Organizations
considering the use of model-based testing are provided with additional arguments
supporting reliability estimation, in addition to information on how the test sets will
support requirement-to-test traceability, which is often a requirement in high-assurance
systems, with the benefit of reduced cost of maintainability.

A key benefit is that the proposed approach supports nontime-based reliability
estimation. Simply stated, once tests are created and executed for every path of the
software component associated with a modeled requirement, the reliability measure is
essentially equivalent to infinite time models related to hardware and mechanical
devices.

Key topics covered by this report include:

• Context and definitions associated with software reliability (See Context
and Definitions)

• Key issues related to test data effectiveness and two examples that
illustrate the impact on reliability (See Test Data Effectiveness)

• Technical details describing fault-finding effectiveness of a model-based
test generation approach that subsumes domain-based test selection
(See Technical Details)

SPC-2004010-MC Version 1.0 March 2005

 6 of 24

• Experiment details that could be used to test other potential approaches
(See Experimental Details)

• Summary and some other potential benefits (See Summary and
Conclusions)

Context and Definitions

Definitions
Reliability is an attribute of dependability as shown in Figure 4. Dependability is a
collective term subsuming the notions of reliability, availability, safety, confidentiality,
integrity, maintainability, and security [Laprie 1984]. The means to achieve it are based
on fault prevention, fault tolerance, fault removal, and fault forecasting to avoid threats. A
system is completely dependable if it never fails. A failure results from a fault. A fault is
caused by a human that makes an error in the specification (i.e., requirement or design)
or implementation of system artifacts. There are many categories of faults⎯for example,
a design fault occurs if a requirement is represented incorrectly in the system. (For more
information on other facets of dependability see Guidance for Achieving Mission
Assurance in Software-Intensive Systems [Blackburn 2004a]).

Attributes

Reliability
Availability
Safety
Confidentiality
Integrity
Maintainability
Security

Dependability Means

Fault Prevention
Fault Tolerance
Fault Removal
Fault Forecasting

Threats
Faults
Errors
Failures

Figure 4. The Dependability Tree [AMSD 2003]
Reliability, is the probability that software will not cause the failure of a system for a
specified time under specified conditions. The probability is a function of the inputs to
and use of the system, as well as a function of the existence of faults in the software.
The inputs to the system determine whether existing faults, if any, are encountered
[IEEE 1988]. Highly reliable systems are used in situations in which repair cannot take
place (e.g., spacecraft) or in which the computer is performing a critical function for
which even the small amount of time lost because of repairs cannot be tolerated (e.g.,
flight-control computers).

Availability is the intuitive sense of reliability. A system is available if it is able to
perform its intended function at the moment the function is required. Formally, the
availability of a system as a function of time is the probability that the system is
operational at that instant of time. Availability is frequently used as a figure of merit in
systems for which service can be delayed or denied for short periods without serious
consequences.

SPC-2004010-MC Version 1.0 March 2005

 7 of 24

Safety is the absence of catastrophic consequences on the user(s) and the
environment.

Confidentiality is the absence of unauthorized disclosure of information.

Integrity is the absence of improper system alterations.

Maintainability is the ability to undergo repairs and evolutions.

Security is the absence of unauthorized access to, or handling of, system state and
relates to availability, confidentiality, and integrity.

Organizations must use an engineering approach to satisfy these dependability
properties by avoiding faults in the requirements, design, and implementation of the
target system. Figure 5 shows a taxonomy to relate the engineering approaches for fault
avoidance [Lyu 1995]. The approaches include fault prevention, fault removal, fault
tolerance, and fault forecasting. The types of faults that are relevant to software primarily
include design, interaction, and malicious logic faults.

Reliability

Fault Prevention

Fault Removal

Fault
Tolerance

Fault
Forecasting

Faults
• Physical
• Transient
• Intermittent
• Design
• Interaction
• Malicious Logic
• Intrusion

Faults
• Physical
• Transient
• Intermittent
• Design
• Interaction
• Malicious Logic
• Intrusion

Figure 5. Fault Taxonomy

Software Reliability Models
Reliability analysis attempts to estimate the probability of losing a function as a result of
component failures. Reliability analysis typically uses physical component models
characterized by failure-rate statistics, where the goal of the analysis is to calculate
system-level failure rates for selected functionalities and to determine which component
faults contribute to the loss of the selected functionalities. A number of software reliability
models have been proposed for assessing the reliability of a software system, some
based on the time domain and other based on the data domain [Gokhale 1996].

Time-domain models represent the underlying failure process of the software under
consideration and use the observed failure history as a guideline in order to estimate the
residual number of faults in the software and the test time required to detect them. The

SPC-2004010-MC Version 1.0 March 2005

 8 of 24

time-domain models are classified into homogeneous Markov,1 nonhomogeneous
Markov, and semi-Markov models.

There is debate on the validity of time-related software reliability models because of
problems when the software’s environment changes. This particularly affects commercial
off-the-shelf (COTS) and Software of Unknown Pedigree (SOUP) because a failure may
occur for a first time in a new environment if the software does not exactly match the
intended functionality [Advantage1 2002]⎯for example, the Ariane 5 failure. Such
failures make any time factor irrelevant. Thus, time-related reliability models for COTS or
SOUP are difficult to justify for high-assurance (e.g., safety-critical) systems, and
additional evidence or approaches are required [Caseley 2003].

Data-domain models are based on the philosophy that if the set of all input
combinations to a computer program are identified, an estimate of the program’s
reliability can be obtained by exercising all the input combinations and observing the
outcomes. In practice, it is not feasible to identify the set of all input combinations, and
this approach is reduced to a method of selecting sample data sets representative of the
expected operational usage for the purpose of estimating the residual number of faults in
the software product under consideration. Data-domain models can be further classified
as:

• Fault-seeding models. The software product, which has an unknown
number of indigenous faults, is seeded with a known number of faults and
subjected to rigorous testing. An estimate of the actual number of
indigenous faults is then obtained by determining the ratio of discovered
seeded faults to discovered actual faults. (More information on this
approach is provided in the section on Experimental Details.)

• Input-domain models. In the case of input-domain models, the reliability
of the software is measured by exercising the software with a set of
randomly chosen inputs. The ratio of the number of inputs that result in
successful execution to the total number of inputs gives an estimate of
the reliability of the software product.

Test Data Effectiveness
This section provides two examples to illustrate the importance of test data selection as
it relates to reliability estimates. For data-domain and time-domain models, the
adequacy of the tests is critical to the reliability estimate. Although the typical approach
referenced in the context of software reliability models is to generate test cases by
selecting operations randomly (i.e., statistically) according to the operational profile and
input states randomly with their domain [Musa 1993], this paper proposes to leverage
automated tools to provide domain-based test data that is more effective than
statistically selected data.

1 Andrey Markov was the Russian mathematician who helped to develop the theory of stochastic
processes, especially those called Markov chains, which are based on the study of the probability
of mutually dependent events.
[http://www.britannica.com/search?query=Markov+&submit=Find&source=MWTEXT]

SPC-2004010-MC Version 1.0 March 2005

 9 of 24

Example 1
Table 1 shows the result of an experiment that compares the effectiveness of domain-
based tests generated by TAF/T-VEC versus statistically based (random) tests. (See
Experimental Details for the details of the experiment.) There were two different versions
of the base program, version 1 with 39 lines of code and 17 decisions that was seeded
with 112 faults, and version 2 with 42 lines of code and 19 decisions was seeded with
117 faults. Based on the effectiveness score that is derived from computing the number
of seeded faults that were exposed by the test cases with respect to the total number of
seeded faults, the two model-based test vector sets had scores of 98.2 % and 99.1 % as
compared to the respective scores of 46.4 % and 62.4 % for the statistically-generated
test sets. The model-based test sets provided 100 % decision coverage, and the
statistically generated test sets resulted in 89.4 % and 90.6 % coverage, even though
the effectiveness scores were low. Even with nearly twice as many statistically based
test cases and relatively high decision coverage (e.g., path coverage), the results
suggest that the approach that uses domain-based test data is critical to uncovering
faults.

Table 1. Experiment Data

Experiment Parameters
Lines of Code
Decisions
Test Selection Approach Domain Statistical Domain Statistical
Test Cases 97 176 105 208
Seeded faults 112 112 117 117
Exposed faults 110 52 116 73
Complete Decision Coverage 100.0% 89.4% 100.0% 90.6%
Effectiveness Score 98.2% 46.4% 99.1% 62.4%

17 19

Version 1 Version 2
39 42

Example 2
Consider the example represented in Figure 6, which is distilled from working with a
Consortium member. During the integration testing of two software-system components,
test cases were selected, and data points from the input spaces were used to test the
functionality. The test-case selection process was based on the operational usage;
however, critical faults were not identified. The requirements for the functionality were
later modeled using TAF, and tests were generated based on the use of domain and
subdomain test selection principles, where test points are selected at the boundary of
the input space. These tests resulted in 318 test cases, with 152 failures. The test cases
generated from the model exposed faults. Analysis helped determined that the values
generated by T-VEC, the generation component of TAF, were located at the boundaries
or subdomain boundaries of the input space, and these particular values exposed the
faults. The manually selected values were selected based on usage data, from data
points within the subdomains and did not identify any faults.

SPC-2004010-MC Version 1.0 March 2005

 10 of 24

Input Space Output
Space

Software

Unexpected output
(failure from user perspective)

Operational profile 1

Operational profile 2

Expected output Test point on
domain boundary

Usage data
test points

Figure 6. Conceptual Representation of Limitation of Statistical Testing

Testing Strategies
Testing strategies are typically characterized as structural, that is, related directly to an
implementation, and functional, that is, based on a specification [Howden 1980].
Specification-based testing, or black-box testing, relies on properties of the software that
are captured in the functional specifications (or requirements model, including interfaces,
possibly design and other behavioral information). The traditional functional testing
approach is to partition the input domain into equivalence classes and select test data
from each class [Richardson 1992].

The following three types of errors can be made in an implementation, resulting in a fault
[Howden 1976]:

• A computation error occurs when the correct path through the program is
taken, but the output is incorrect because of faults in the computation along the
path.

• A domain error occurs when an incorrect output is generated because the
wrong path was executed through a program.

• A missing-path error occurs when the implementation does not fully implement
the requirements or design. This type of error must be identified by inspection
rather than testing.

[White 1980] proposed domain testing theory as a strategy for selecting test points to
reveal domain errors. It is based on the premise that if there is no coincidental
correctness, then test cases that localize the boundaries of domains with arbitrarily high
precision are sufficient to test all the points in the domain. Domain testing theory is
based on the intuitive idea that faults in the implementation are more likely to be found
by test points chosen near appropriately defined program input and output domain
boundaries [Tsai 1990].

[Beizer 1995] describes "domain testing" as an approach to select test inputs based on
the domains (ranges) of the system inputs at or around the maximum and minimum
values of these ranges. Furthermore, he describes "formal specification based testing,"
which starts with the system input domains, then partitions these domains into
subdomains based on the logic within the specification (model). Using this technique,

SPC-2004010-MC Version 1.0 March 2005

 11 of 24

picking test input values from the subdomains verifies the logic of the application. This is
also referred to as partitioning. Each partition is an equivalence class that must be
tested.

As noted the Introduction, SRE is one of the noted approaches of software reliability
engineering, based on identifying operational profiles (sometimes related to use-case
testing). An operational profile is a usage model that characterizes possible scenarios of
software use at a given level of abstraction. A random test case is a traversal of the
usage model based on state transitions that are randomly selected from a usage
probability distribution. The notion of a random test value is that a statistically
independent set of values is selected from an input domain. Random test sets are a form
of statistical testing that can be based on various non stochastic (i.e., probabilistic) and
stochastic models. Statistical testing is based on the premise that when a population is
too large for exhaustive study, as is the case for all possible uses of a software system,
a statistically correct sample must be drawn from the input population [Poore 1998].

Limits of Usage-Based Testing
The concern with usage-based tests, like SRE, is that they seldom cover all the paths
through the component. A path results from constraints in the requirements or design
decisions associated with implementation-derived requirements that are implemented as
decisions (i.e., control-flow paths) in the implementation. The constraints result in input
subdomains associated with a path through the implementation. The complexity of
systems today typically results in many layers of implementation-derived requirements.
Each component has one or more paths, and each path must be tested to provide
assurance that there are no faults. If a path is not probed by at least one test, a fault
cannot be detected; however, full test coverage does not guarantee detection of all faults
because the proper test inputs often are required in order to expose a fault as illustrated
by the results shown in Example 1 and Example 2. The second problem is that the
values selected by usage tests often are nominal values, not at or near domain or
subdomain boundaries, where failures are more likely to be exposed.

Technical Details
This section uses an example to explain technical details related to test data selection
for domains and subdomains. Although the test selection process can be performed
manually, the number of cases and the complexity of system requirements make the
selection of test values at the domain or subdomain boundaries a challenging manual
task. TAF’s test generation performs domain-based test selection from a requirements
model of the software component under test or a hierarchical model to address a
multileveled system component. The test generation produces test points for all
constraints in a model and can provide the equivalent of modified condition-decision-
level [MCDC] test coverage of the modeled specification. For MCDC coverage, every
point of entry and exit in the program has been invoked at least once; every condition in
a decision in the program has taken on all possible outcomes at least once; and each
condition has been shown to affect that decision outcome independently. A condition is
shown to affect a decision’s outcome independently by varying just that decision while
holding fixed all other possible conditions. See [Hayhurst 2001] for a more in-depth
summary of structural coverage.

SPC-2004010-MC Version 1.0 March 2005

 12 of 24

Understanding Domains and Subdomains
The following example explains the concepts of domain and subdomain as they support
an objective approach to systematic test selection. The following Vertical Tracker
example is simplified from a requirement of the Traffic and Collision Avoidance System
(TCAS). A Vertical Tracker component would track another aircraft relative to one's
current altitude and must maintain the tracking state. Figure 7 provides some additional
details about the Vertical Tracker. The altitude of an aircraft is defined by a standard
known as Gilliam Altitude, and it can range from –1,000 feet to 127,000 feet. The Own
Aircraft is located in the center of the model. Another aircraft is considered to be
“in_altitude_window” if it is within 2,700 feet above or below Own Aircraft. It is within the
altitude rate limit (i.e., “rate_limit”) if it satisfies the constraint that is represented by the
shaded area. Other requirements are related to the Vertical Tracking state as defined by
the following:

• The Vertical Tracker for Own Aircraft shall be in TRACKING state if Own
Aircraft is at or above 10,000 feet in altitude, but no other aircraft is in the
altitude window.

• The Vertical Tracker for Own Aircraft shall be in ADVISORY state if Own
Aircraft is at or above 10,000 feet in altitude, and another aircraft is in the
altitude window.

• The Vertical Tracker for Own Aircraft shall be in NOT_TRACKING state if
Own Aircraft is less than 10,000 feet in altitude.

As shown in Figure 7, Aircraft 1 is in the altitude window but does not meet the altitude
rate limit; Aircraft 2 meets both constraints; and Aircraft 3 does not meet any of the
constraints.

2700

-2700

2700 2700

-2700 -2700

Own Aircraft

Aircraft 1

Aircraft 2

Aircraft 3

rate_limit

in_altitude_window
(alt >= -2700
AND
alt <= 2700)

Figure 7. Visual Representation of Vertical Tracker Constraints

The domain is the set of values that go into a function; the domain of the input space for
aircraft altitude can range from –1,000 to 127,000 feet. For two aircraft, the input space
is defined by the cross-product of Own Aircraft’s altitude and the nearest aircraft’s

SPC-2004010-MC Version 1.0 March 2005

 13 of 24

altitude (i.e., “Nearest_altitude”), and both have the same input domain as reflected in
Figure 8. For this example, Aircraft 2 is the Nearest_altitude, as shown in Figure 7.

Own_altitude

(12700,-1000)

(12700, 12700)

(-1000,-1000)

(-1000,12700)

Domains:
Own_altitude integer range [-1000..127000]
Nearest_altitude integer range [-1000..127000]

Nearest_altitude
Figure 8. Input Domains

Another requirement for the Vertical Tracker is that if the Own Aircraft is above 10,000
feet, then it is in tracking mode. This requirement imposes a constraint on the input
space that partitions the domain into two subdomains as reflected by Figure 9, labeled
TRACKING MODE and NOT TRACKING MODE. For testing purposes, it is important to
have at least one test point for each subdomain of a component’s input space. Ideally,
the test points should be selected near the boundaries of the domain. In this case, some
of the critical points for the boundary defined by the constraint occur where the
Own_altitude is less than 10,000 (e.g., –1,000, 9,999) and greater than or equal to
10,000 (e.g., 10,000, 10,001, 12,700).

Constraint:
If Own_altitude >= 10000 then TRACKING MODE
Else NOT TRACKING MODE

TRACKING MODE

NOT TRACKING MODE

Own_altitude

(12700,-1000)

(12700, 12700)

(-1000,-1000)

(-1000,12700)

Nearest_altitude
Figure 9. Partition of Domain Into Subdomains

When the Own Aircraft is in tracking mode (i.e., Own_altitude >= 10,000) and another
aircraft is within 2,700 feet above or below, then the aircraft goes into an advisory mode.

SPC-2004010-MC Version 1.0 March 2005

 14 of 24

This creates another subdomain, labeled ADVISORY, with different boundaries as
reflected in Figure 10. Figure 11 shows test points overlaid on an enlarged image of the
ADVISORY subdomain for test cases 11, 13, and 18 that were generated by TAF.
Notice that the values selected are at or near the boundaries of the subdomain. These
are the test values that are likely to uncover faults.

Constraint:
If Own_altitude in TRACKING MODE
AND abs(Own_altitude – Nearest_altitude) <= 2700

then ADVISORY

Nearest_altitude
(12700,-1000)

(12700, 12700)

(-1000,-1000)

(-1000,12700)

TRACKING MODE

NOT TRACKING MODE

A
D

VI
SO

R
Y

10000

Figure 10. Constraints for Advisory Mode

7300

10000

12700

ADVISORY

Figure 11. Sample Test Points

Domain Error Coverage

Subdomains are introduced when a requirement or design constraint is specified. These
constraints result in decisions that must be implemented, and those decisions manifest
in different code paths. The constraints introduce new boundaries as shown in Figure
10, which are associated with the logically AND’ed set of conditions for that constraint,
for example:

SPC-2004010-MC Version 1.0 March 2005

 15 of 24

The Vertical Tracker is in ADVISORY mode when Own Altitude >= 10,000 AND

abs(Own Altitude – Nearest Altitude) <= 2,700

In T-VEC, this is call a domain convergence path (DCP), and the test generator selects
input test values for the borders of the subdomain. A border is defined by evaluating the
predicates (i.e., individual constraints) of a DCP for a set of input values. Test points for
numeric objects are selected for both upper and lower domain boundary values as
reflected in Figure 11. This results in test points for subdomain borders based on all low-
bound values and high-bound input values that satisfy the DCP predicates.

Domain errors are associated with the requirements and occur if the constraints are not
satisfiable. If domain errors do not exist in the modeled requirement, the selection of
extreme values provides test points to detect computation errors (e.g., overflow,
underflow, or incorrect calculations). Intuitively, this domain testing mechanism provides
confidence that every path of the implementation is correct with respect to every DCP
and function of a component’s requirement or design model.

Table 2 shows a few of the test points that should be considered for the Vertical Tracker.
These values are near the domain or subdomain boundaries.

Table 2. Test Points for Vertical Tracker State
 # State nearest_altitude own_altitude

10 ADVISORY 127000 126999

9 ADVISORY 127000 127000

8 ADVISORY 10001 10000

7 ADVISORY 7500 10000

6 TRACKING 127000 124499

5 TRACKING 124499 127000

4 TRACKING 12501 10000

3 TRACKING -1000 10000

2 NOT_TRACKING -1000 9999

1 NOT_TRACKING 127000 -1000

Computation Error Coverage

Some inputs to functions are not constrained by the DCP predicates. For each test point
derived from DCP predicates, there are additional test points derived for unconstrained
inputs not referenced in the DCP. Test values are selected based on the domain
boundary value combinations (e.g., low bound and high bound for numeric objects and
sets for enumerated variables). By selecting the extreme value combinations, there is a
possibility to detect computation errors in the output calculation. This test selection
strategy is used to detect computation errors or show that unconstrained inputs do not
affect the output for a program path.

SPC-2004010-MC Version 1.0 March 2005

 16 of 24

Path Combinations in Hierarchical Systems
Test effectiveness in hierarchical systems is more challenging because paths are
threaded together through hierarchically related components. A path refers to one
logically AND’ed set of constraints as discussed for subdomains, but with hierarchical
paths, it includes logically AND’ing conditions from hierarchically related components.
Usage data is not likely to cover all paths related to the implementation or the
requirements. There are two key issues related to selecting effective test data for
hierarchically related components:

• Selecting test data to cover all combinations of paths requires a
combinatorial larger number of test cases.

• Selecting test values to traverse all paths is numerically challenging,
requiring that constraints associated with the paths be analyzed to select
the appropriate test data.

To generate tests for every path throughout a hierarchy of software components can be
more effort-intensive and costly, but the cost and effort to minimally cover each path
through all components can be minimized if testing is performed on a layer-by-layer
basis. Consider the example shown in Figure 12:

Component C calls C.1, and C.1 calls C.1.1 and C.1.2. The exclusive paths in each
component are:

 — C = 2 paths
 — C.1 = 4 paths
 — C.1.1 = 4 paths
 — C.1.2 = 3 paths

C

C.1

C.1.2C.1.1

Testing here
demands

2 * 4 * 4 * 3 = 96 tests

Testing at all levels
takes

2 + 4 + 4 + 3 = 13
tests

Figure 12. Example Illustrating Paths and Test Coverage

To cover all the paths from the top-level component (C) would require 96 total tests. The
required number of tests is 13 if a level-by-level approach is used to test each path in
each component. The effort becomes exponential if a tester attempts to test all
combinations of paths from the higher level, for example through a graphical user
interface (GUI) represented by component C. When testing on a level-by-level basis,
tests must be constructed to cover only the conditions associated with the paths of that
component, which also can demonstrate that the integration within that level operates
properly. Usage-based testing seldom occurs on a level-by-level basis, and it is unlikely
that 96 tests will be performed. Therefore, the reliability estimate should take this into
consideration.

SPC-2004010-MC Version 1.0 March 2005

 17 of 24

TAF supports hierarchical relationships. In generating test vectors for a hierarchy of
models, as represented in Figure 13, the test generator selects test cases for the DCP
paths of the high-level components (e.g., Grandparent) without regenerating all the test
vectors for each referenced lower-level subsystem. The test vector generator bases the
test selection on the DCPs for the upper-level subsystem (Grandparent), not the
combination of DCPs for the parent and children subsystems. This mechanism
precludes the combinatorial explosion associated with tests generated from the
combination of constraints in a hierarchy of subsystems as represented in Figure 12.

Child
DCP 1
DCP 2

…
DCP k

Parent
DCP 1
DCP 2

…
DCP j

Parent
DCP 1
DCP 2

…
DCP j

Grandparent
DCP 1
DCP 2

…
DCP i

Grandparent
DCP 1
DCP 2

…
DCP i

Figure 13. Hierarchical Subsystem Relationships

This level-by-level process provides an efficient means for performing unit, software-
integration, and system-level testing. For additional information on this recommended
process, see Section 4 of Guidance for Achieving Mission Assurance in Software-
Intensive Systems [Blackburn 2004a]. This report recommends a recursive process for
specifying functional requirements, design, and architectures combined with a
continuous and layered approach to verification so that requirement and design artifacts
are verified and defects are contained to their phase of creation, while systematically
applying verification processes at each layer of the system.

Experimental Details
This section describes an experiment to test the hypothesis that the model-based testing
approach using domain-based test selection is more effective at finding faults than
statistically based test-set selection. The experiment compares the TAF/T-VEC model-
based test generator with a statistically based test generator and uses a fault-seeding
technique, referred to as mutation testing, with path-coverage analysis techniques to
assess the adequacy of the generated test sets. The results, shown in Table 1, suggest
that the evaluated model-based test generator is better than 98 % effective at finding
program faults and is as much as 51 % more effective than a random number test-set
generator with half the number of test cases. The implications of the results are that the
model-based test generation approach provides a more systematic approach to test
selection that can support better reliability estimation in a predictable set of time that is
directly related to the modeled requirements. Another key finding is that the statistically
selected test cases had a relatively high degree of decision coverage, but that did not
make them effective in finding the seeded bug. This supports the argument that it is
important to select critical values to uncover faults.

Mutation testing is a fault-based testing technique that has been effective in assessing
the adequacy of a test set for a program [Hamlet 1977; DeMillo 1978]. For any program,
mutations of a base program (referred to as mutants) are generated through the use of
mutation operators. A mutation operator describes a set of syntactic changes based on

SPC-2004010-MC Version 1.0 March 2005

 18 of 24

program language constructs. Each mutant contains one fault. The adequacy of a test
set can be measured by its ability to detect the mutants derived from the base program.
A mutation score for a test set is the percentage of nonequivalent mutants that are
killed (i.e., detected) by a test set.

Mutation testing has been shown to be effective; however, because the number of
mutants for real-world programs can grow large, it is typically expensive to use. This
experiment used selective mutants [Offutt 1994]. Selective mutants use a subset of the
standard mutation operators and appear to be effective in generating minimally sized,
adequate test sets for finding faults in programs.

The coverage criterion applied to the subjects was decision coverage: every point of
entry and exit in the program has been invoked at least once, and every decision in the
program has taken on all possible outcomes at least once [RTCA 1992]. The base
programs were instrumented so that every decision and every statement guarded by a
decision had a statement to record that a path through the program had been executed.
The instrumented statements also were included automatically when the mutants were
generated but were not modified by the mutant generator. The test set was run through
a mutant, and those instrumented locations that were not executed were recorded
programmatically.

Figure 14 shows the relationships between the elements of the design. The design uses
a base program that is a correct implementation for the requirements. The specification
was modeled using TAF. Test vectors were generated from the model using T-VEC. The
base program executes correctly with respect to the requirements. For this experiment,
correct means that the:

• Actual output values must equal the expected output values for all test
inputs.

• Test sets must satisfy complete program coverage based on a coverage
criterion.

Model

Test Vector
Generator

Random Test
Generator

Test
Vectors

Mutant
1Mutant

2 Mutant
n

. . .
Mutations of
base programs

Test
Cases

Coverage criteria

Execution
Environment

Actual outputs

Coverage results

Base
Program

Mutant
Generator

Figure 14. Experimental Design

The base program was mutated based on the selective mutants. The selective mutant
operators summarized in Table 3 were applied to those constructs used in two different

SPC-2004010-MC Version 1.0 March 2005

 19 of 24

base program versions. The mutations resulted in 112 mutants for version 1 and 117
mutants for version 2. The test sets, both generated and random, were executed by
each mutant, and the actual output and coverage results were recorded.

Table 3. Select Mutant Operators

Function Mutations Applied to Base Program Subjects

Absolute value insertion
Each arithmetic expression to take on the value 0, a positive value,
and a negative value

Arithmetic operator replacement Replaces every syntactically legal operator ('+','-','*','/')
Logical connector replacement Replaces each logical connector (AND and OR)

Relational operator replacement
Replaces relational operators with other syntactically legal relational
operators ('<=', '>=', '<', '>', '!=')

Unary operator insertion
Inserts unary operators in front of expressions (replaces a '-' with a
'+', or inserts a '-' in front of expressions)

Summary and Conclusions
This paper discusses a systematic approach to test-case definition that should provide a
more objective basis for estimating the reliability of a software component.
Recommended practices to reliability estimation and prediction often are based on test
selection guided by operational profiles, but operational profiles seldom cover all the
paths through the component. A path results from requirement constraints or design
decisions that are implemented as decisions in the implementation. The requirement
constraints manifest in paths through the implementation. The complexity of systems
today typically results in many layers of implementation-derived requirements. Each
component has one or more paths. To maximize the confidence in the reliability
estimates, each path must have one associated test to provide assurance that there are
no faults in the decision or computations of that path. If a path is not probed by at least
one test, a fault cannot be detected. However, experiment data presented in this paper
shows that full test coverage over all paths does not guarantee detection of all faults
because the proper test inputs often are critical in order to expose a fault. Recognizing
that the assumption for software reliability models is to generate test cases by selecting
operations randomly (i.e., statistically) according to the operational profile and input
states randomly with their domain, this paper recommends the use of test data values
generated from requirement models that localize the test values at or near the domain
and subdomains boundaries, where faults are more likely to be exposed.

Benefits
The benefits of this approach over traditional approaches to test-case selection to
support reliability estimation include the following:

• Reduces or eliminates the activity of manually identifying and selecting
minimally valid test sets

• Compresses the “execution time” factor in reliability measure calculation
• Reduces or eliminates the effort dedicated to identifying and

characterizing operational profiles that can be subsumed by models

SPC-2004010-MC Version 1.0 March 2005

 20 of 24

• Eliminates manual determination of operational profiles and associated
test suites by subsuming them with domain- and subdomain-based tests

• Supports early estimation and better prediction of the time and effort
required to achieve predictable reliability, with the added benefit that the
test sets will support requirement-to-test traceability, which is often a
requirement in high-assurance systems

Since 1996, the Systems and Software Consortium, Inc. (SSCI) has worked with
Consortium members and continues to see increased adoption of model-based testing
tools. Model-based testing has many benefits, including better quality requirements,
better tests, and faster test design. Modeling and test generation minimize the process
variation between individuals and organizations and provide additional capabilities to
address software reliability with additional tools and side benefits. Tests generated from
a model of the requirements or design provide a means for exposing a fault in the
implementation, but the use of models and the model checking that is performed as part
of the automatic test generation are effective in exposing requirement or design defects.

With the recent integration of requirement management tools with SSCI’s requirement
and design-based modeling and test generation tools, the tools support full requirement-
to-test traceability. Some of the key benefits derived through the traceability process
help to foster organizational adoption of the model-based testing tools that provide the
benefits of the systematic test generation that might be more effective in helping
organizations quantify their reliability earlier in a nontime-based approach to reliability
estimation as they directly relate their reliability estimates in the context of requirement
coverage and completeness.

References
[AMSD 2003] AMSD Partners, University of Newcastle. Tom Anderson, ARCS; Erwin

Schoitsh, CNUCE; Luca Simoncini, LAAS; Jean Claude Laprie; JRC;
Marc Wilikens, Adelard; and George Cleland. “Accompanying Measure
in System Dependability.” FP5.8 KAII Road mapping project, June 2002
- May 2003.

[Advantage1 2002] Advantage1. The Assessment of Software Components for Safety
Applications – Management Guidance, 21980/05/Rep-02, Issue
1.Available through the MoD Acquisition Management System.
Advantage1, March 2002.

 [Beizer 1995] Beizer, B., Black-Box Testing: Techniques for Functional Testing of
Software and Systems, 1995, ISBN 0-471-12094-4.

[Bishop 2002] Bishop, P.G., Rescaling Reliability Bounds for a New Operational Profile,
Centre for Software Reliability and Adelard
City University, London, UK.

[Blackburn 1998] Blackburn, M.R., and J. Fontaine. Specification Transformation to
Support Automated Testing, SPC-97037-MC, version 01.00.02.
Herndon, Virginia: Software Productivity Consortium, 1998.

SPC-2004010-MC Version 1.0 March 2005

 21 of 24

[Blackburn 2003] Blackburn, M.R., R.D. Busser, A.M. Nauman, Interface-Driven, Model-
Based Test Automation, CrossTalk, May 2003.
http://www.stsc.hill.af.mil/crosstalk/2003/05/Blackburn.html

[Blackburn 2004a] Blackburn, M.R. Guidance for Achieving Mission Assurance in Software-
Intensive Systems, SPC-2004041-MC, version 1.0. Herndon, Virginia:
Software Productivity Consortium, 2004.

[Blackburn 2004b] Blackburn, M.R., R.D. Busser, A.M. Nauman, T.R. Morgan, Using
Models for Development and Verification of High Integrity Systems,
INCOSE MARC 2004, the INCOSE Mid-Atlantic Regional
Conference • November 2–4, 2004 • Arlington, Virginia.
http://www.software.org/pub/externalpapers/papers/blackburn-2004-
1.pdf

[Caseley 2003] Caseley, P.R., Sqn Ldr N. Tudor, Dr. C. O’Halloran, DSTL, RAF,
Qunetiq. The Case For An Evidence Based Approach To Software
Certification. Crown, 2003.

[DeMillo 1978] DeMillo, R. A., W. M. McCracken, R. J. Martin, and J. F. Passafiume.
Software Testing and Evaluation. Benjamin/Cummings Publishing
Company, Redwood City, CA 1978.

[Frankl 1998] Frankl, P. G.; Hamlet, R. G.; Littlewood, B.; Strigini, L.: Evaluating
Testing Methods by Delivered Reliability, IEEE Trans. Software Eng. 24
(1998), pp. 587 -601

[Gokhale 1996] Gokhale, S., P. Marinos, and K. Trivedi. “Important Milestones in
Software Reliability Modeling.” Communications in Reliability
Maintainability and Serviceability, An International Journal published by
SAE International, 1996.

[Grottke 2001] Grottke, M., K. Dussa-Zieger, Systematic vs. Operational Testing:
The Necessity for Different Failure Models, Proc. 5th Conference on
Quality Engineering in Software Technology, Nuremberg, 2001.

[Hamlet 1977] Hamlet, R. G. “Testing Programs with the Aid of a Compiler.” IEEE
Transactions on Software Engineering (July 1977).

[Hayhurst 2001] Hayhurst, Kelly J., Dan S. Veerhusen, John J. Chilenski, and Leanna K.
Rierson. A Practical Tutorial on Modified Condition/Decision Coverage,
NASA/TM-2001-210876, 2001.
http://techreports.larc.nasa.gov/ltrs/PDF/2001/tm/NASA-2001-
tm210876.pdf

[Heitmeyer 1996] Heitmeyer, C., R. Jeffords, B. Labaw, Automated Consistency Checking
of Requirements Specifications. ACM TOSEM, 5(3):231-261, 1996. See
http://chacs.nrl.navy.mil/personnel/heitmeyer.html.

[Howden 1976] Howden, W.E. “Reliability of the Path Analysis Testing Strategy.” IEEE
Transactions on Software Engineering 2,9(1976): 208-215.

[Howden 1980] Howden, W.E. “Functional Program Testing.” IEEE Transactions on
Software Engineering 6,2(1980): 162-169.

SPC-2004010-MC Version 1.0 March 2005

 22 of 24

[IEEE 1988] Guide for the Use of IEEE Standard Dictionary of Measures to Produce
Reliable Software, Institute of Electrical and Electronics Engineers, IEEE
981.2-1988.

[Laprie 1984] Laprie, J.C., “Dependability Evaluation of Software Systems in
Operation.” IEEE Transactions on Software Engineering SE-10 (1984):
701-714.

[Lyu 1995] Lyu, Michael R. Software Fault Tolerance. John Wiley & Sons Ltd.: New
York, New York, 1995.

[McCabe 2002] McCabe, R., M. R., Blackburn, Applying the Test Automation Framework
With Use Cases and the Unified Modeling Language, SPC-2002048-
MC, version 1.0. Herndon, Virginia: Software Productivity Consortium,
2002.

[Musa 1993] Musa, J. D. “Operational Profiles in Software-Reliability Engineering.”
IEEE Software 10,2 (March 1993).

[Offut 1994] Offutt, A. J., A. Lee, G. Rothermel, R. Untch, and G. Zapf. An
Experimental Determination of Sufficient Mutant Operators, Internal
Draft. Fairfax, Virginia: George Mason University, October 1994.

[Poore 1998] Poore, J. H., and Carmen J. Trammell. Software Engineering
Technology, Inc., 1998.
 www.stsc.hill.af.mil/crosstalk/1998/04/statistical.pdf

[Richardson 1992] Richardson, D.J., S. Leif Aha, and T.O. O'Malley. “Specification-Based
Oracles for Reactive Systems.” In Proceedings, 14th International
Conference on Software Engineering. New York, NY pages 105-
118,1992.

[RTCA 1992] Radio Technical Corporation for Aeronautics Special Committee 167.
Software Considerations in Airborne Systems and Equipment
Certification, DO-178B/ED-12B. Washington, DC: Radio Technical
Corporation for Aeronautics Special Committee, December 1992.

[Schneidewind 2004] Schneidewind, N.F., A Recommended Practice for Software Reliability,
CrossTalk, August, 2004.
http://www.stsc.hill.af.mil/crosstalk/2004/08/0408Schneidewind.html

[Storey 1996] Storey, N., Safety-Critical Computer Systems. Harlow, England:
Addison-Wesley, 1996.

[Tsai 1990] Tsai, W.T., D. Volovik, and T.F. Keefe. “Automated Test Case
Generation for Programs Specified by Relational Algebra Queries.” IEEE
Transactions on Software Engineering 16,3 (March 1990):316-324.

[White 1980] White, L. J., and E. I. Cohen. “A Domain Strategy for Computer Program
Testing.” IEEE Transactions on Software Engineering SE6,3 (May
1980).

SPC-2004010-MC Version 1.0 March 2005

 23 of 24

History and Technical Details of TAF
The core capabilities of this approach were developed in the late 1980s and proven through use in
support of Federal Aviation Administration (FAA) certifications for flight-critical avionics systems. The
approach supports requirement-based test coverage mandated by the FAA with significant life-cycle
cost savings. The approach and tools have been used for modeling and testing system, software
integration, software unit, and hardware/software integration functionality. It has been applied to critical
applications in medical and aerospace, supporting automated test-driver generation in most languages
(e.g., C, C++, Java, Ada, Perl, PL/1, Structured Query Language (SQL), as well as proprietary
languages, and test environments.

TAF model translators convert various modeling notations into a T-VEC specification [Blackburn 1998].
T-VEC compiles the specification and derives the partitions for all subdomains associated with the
modeled functionality. T-VEC selects test data for subdomains of an input space based on the
constraints of the model that define the subdomain. A set of test vectors is generated for each logically
AND’ed set of constraints, referred to as the DCPs. The underlying specification language of the TAF
test generator has continually evolved to support an extensive set of logical and mathematical
operators that extend the standard arithmetic operators (e.g., trigonometric, intrinsic, integrators,
quantization, matrix operations). The modeling language uses functions or other forms of model
references to support model composition that is required to scale to large and complex applications.
Test generation support is provided for models that are composed hierarchically or sequentially.

T-VEC supports model checking. Model checking is a “lightweight” form of a formal method that
checks the truth or falsity of modeled specifications for each DCP. A simple example is a logical
contradiction, where (x>0) & (x<0). TAF performs model checking on simple models as well as
hierarchically composed models and generates test vectors as a by-product. Test selection for higher-
level subsystems typically depends on constraints or functions of lower-level subsystems. References
from higher-level to lower-level subsystems must be supported by at least one DCP in a lower-level
subsystem. If there is no DCP thread from a higher-level subsystem to a lower-level subsystem, this
proves that there is no input space associated with the model (i.e., the input space for the DCP is null).
When generating test vectors, the inputs are selected from the inputs, but if the input space is null, no
tests can be selected; this is an invalid specification within the model.

Child
DCP 1
DCP 2

…
DCP k

Parent
DCP 1
DCP 2

…
DCP j

Parent
DCP 1
DCP 2

…
DCP j

Grandparent
DCP 1
DCP 2

…
DCP i

Grandparent
DCP 1
DCP 2

…
DCP i

This model-checking capability also supports proof-of-safety properties. Model assertions representing
safety properties can be specified. During the test generation process, if test vectors are generated
from a safety property that is associated with a model, the test vector identifies a DCP thread through
the model, where the safety property is violated. Other checks, such as mathematical errors or
potential errors (e.g., division by a domain that spans zero) are flagged as being a potential divide-by-
zero hazard, or range overflow/underflow (i.e., variables which at some point in the mode have values
outside the specified bounds of the type of that variable).

SPC-2004010-MC Version 1.0 March 2005

 24 of 24

About the Systems and Software Consortium, Inc.
The Systems and Software Consortium, Inc. (SSCI) enables its members to solve
complex challenges on large, software-intensive, network-centric systems. SSCI
provides leadership and business-advancing intelligence on standards and trends, to
help our members enhance their business performance.

SSCI is a world-class leader in the application of tools and processes to support
software and systems engineering and design management, integration, and mission
assurance.

About the Particular Program
Members with general questions or comments on any of the topics in this paper or related
topics, or members interested in applying TAF with SSCI assistance, should contact the
author or their member account director (see
http://www.systemsandsoftware.org/pub/keycontacts.asp).

For more on TAF, see SSCI’s TAF website at
http://www.systemsandsoftware.org/pub/taf/testing.html

SSCI is interested in your comments and suggestions.
Please send your thoughts and insights to

blackburn@systemsandsoftware.org.

