

Guidelines for Software
Tool Qualification

Robert D. Busser
Software Productivity Consortium
2214 Rock Hill Road, Herndon, VA 22070

Mark Blackburn
Software Productivity Consortium
2214 Rock Hill Road, Herndon, VA 22070

 busser@software.org
(703) 742-7280

blackburn@software.org

(703) 742-7136

Abstract Contents

Software Productivity Consortium (Consortium) members
applying the tools for both the requirement and design model-
driven verification and validation are often required to certify
their software with various certification authorities such as the
Federal Aviation Administration (FAA) and Food and Drug
Administration (FDA). These certifications require methods
and supporting artifacts for qualifying the tools used for
software development and verification. This report provides
guidelines for how to use tool qualification information to
support certification processes.

Intr
Ba

Fun

Too

Qu

Su
Re

The technology transfer of the Software Productivity Consortium’s (Consortium
Framework (TAF) to Consortium members is an integral part of the Consortium
Validation (V&V) product line. A primary attribute of TAF is its capability to di
the V&V processes and automatically produce the deliverables required by feder
Federal Aviation Administration (FAA) and Food and Drug Administration (FD
certification of software-based applications in their respective domains of author
Global Aviation Traffic Management (GATM), all commercial airborne systems
airborne military and space systems (U.S. Air Force 2001), have to comply with
avionics that require DO-178B certification. Several Consortium members have
TAF for this purpose (Busser, Blackburn, and Nauman 2001; Kelly et al. 2001; S

One possible roadblock to greater adoption of TAF by Consortium members is t
used to automate aspects of software development or verification that will be app
credit, without formal review, must be qualified. The tool qualification task can
seen as a hindrance when choosing to use TAF on programs governed by this co
major survey conducted as part of the FAA’s independently commissioned Strea
Aspects of Certification (SSAC) program within the civil avionics development
section on tool qualification. The results of this survey indicated that 60% of the
the cost attributed to tool qualification to be small or negligible, 36% considered
and only 4% considered the cost to be prohibitive (Hayhurst et al. 1999). Fortun

Bullseye is a copyright of Bullseye Testing Technology.
MATRIXx is a trademark of National Instruments, Inc.
Simulink and Stateflow are registered trademarks of the MathWorks, Inc.

Copyright © 2003, Software Productivity Consortium NFP, Inc. and T-VEC Technologies, Inc. All rights res
property of the Software Productivity Consortium NFP, Inc. The contents of this document shall be kept conf
Membership Rules, as amended from time to time, of the Software Productivity Consortium NFP, Inc. This d
in accordance with the terms and conditions of those Rules. All complete or partial copies of this document mu
oduction 1
ckground Context for Tool

Qualification 3
damentals of Tool
Qualification 6
l Qualification Support for
TAF and T-VEC 10

alifying TAF and T-VEC for
a Project 16

mmary 16
ferences 17
Introduction
) Test Automation
’s Verification and
rectly automate many of
al agencies, such as the
A), in support of
ity. In addition, under the
, in addition to all
 FAA regulations for
been, or will be, using
tatenzi 2000, 2001).

hat any software tools
lied for certification

be nontrivial and may be
nstraint. However, a
mlining Software
community included a
 respondents considered
 the cost to be substantial,
ately for most users of

erved. This document is proprietary
idential pursuant to the terms of the
ocument shall only be disseminated
st contain a copy of this statement.

mailto:busser@software.org

SPC-2003064-MC Version 01.00 October 2003

TAF, the tool qualification cost should be minimal because the tool qualification packages have been
developed for several tool components of the TAF (see Tool Qualification Support for TAF and T-VEC
for details).

Scope
The purpose of this paper is to provide Consortium members with information about the tool qualification
process, when it is applicable, where to find additional detailed guidance, and the general procedures they
will need to follow to qualify their software tools. It also provides guidelines for qualifying use of TAF
tools on their specific applications and describes the tool qualification suites, documentation, and support
available to assist them with their tool qualification efforts.

The FDA, like the FAA, requires validation of automated process equipment and quality system software
that is used to produce FDA-certified products. These guidelines are documented in General Principles of
Software Validation; Final Guidance for Industry and FDA Staff (U.S. Food and Drug Administration
2002). These guidelines reflect the same general intent as the tool qualification guidelines for FAA
qualification (U.S. DOT 2003); however, the FAA guidelines are more specific. While working with
members involved in FDA certification and in discussions with FDA representatives that have attended
Consortium events, the FDA is aware of the potential use of the FAA guidelines for tool qualification to
supplement the current FDA guidelines. Therefore, this document focuses on summarizing these more
specific guidelines defined in Order 8110.49, Software Approval Guidelines (U.S. DOT 2003), and more
specifically Chapter 9, which addresses Qualification of Software Tools Using RTCA/DO-178B, while
describing their applicability to TAF.

Audience and Benefits

This paper is applicable to managers, project leads, software developers, quality assurance staff, and test
engineers who are responsible for managing, planning, and estimating project effort, cost, and duration. In
addition, this paper is applicable to Aircraft Certification Office (ACO) engineers and to Designated
Engineering Representatives (DER) as it applies to the application of RTCA/DO-178B, Software
Considerations in Airborne Systems and Equipment Certification (RTCA 1992), to the qualification of
software verification and development tools. The paper assumes that the readers are familiar with TAF
and are either using TAF or plan to use TAF in the future. It also assumes that the reader is at least
familiar with the main issues of software certification in the context of guidelines such as DO-178B and is
interested in learning more about the issues and impacts of applying TAF to assist in the development of
software applications governed by similar certification constraints. References to additional information
on TAF, DO-178B, and the subject of tool qualification are provided in the section For More Information.

Organization of This Paper

The section Background Context for Tool Qualification provides context for this paper by introducing one
of the primary software certification guidelines, DO-178B – Software Considerations in Airborne Systems
and Equipment Certification, which first introduced the subject of, and requirements for, tool
qualification. It then describes the evolution of clarifications and resulting guidelines for tool qualification
since the release of DO-178B. Fundamentals of Tool Qualification present the key aspects of tool
qualification. It discusses the two primary categories of tools, development tools and verification tools,
and the differences and similarities in how they are treated by DO-178B with respect to qualification
requirements. It also discusses how and where tool qualification fits into the overall DO-178B software
certification process. Tool Qualification Support for TAF and T-VEC describes the tool qualification

 2 of 17

SPC-2003064-MC Version 01.00 October 2003

documentation and test suites that have been created by the Consortium and T-VEC Technologies, Inc.
Qualifying TAF and T-VEC for a Project provides guidance on qualifying TAF and T-VEC, per DO-
178B. The Summary contains concluding remarks.

Definitions

• Modified Condition/Decision Coverage (MC/DC). Every point of entry and exit in the
program has been invoked at least once; every condition in a decision in the program has
taken all possible outcomes at least once; every decision in the program has taken on all
possible outcomes at least once; and each condition in a decision has been shown to
independently affect that decision’s outcome.

• Decision Coverage. Every point of entry and exit in the program has been invoked at
least once, and every decision in the program has taken on all possible outcomes at least
once.

• Statement Coverage. Every statement in the program has been invoked at least once.
• Software Tool. A computer program used to help develop, test, analyze, produce, or

modify another program or its documentation. Examples are an automated design tool, a
compiler, test tools, and modification tools (RTCA 1992).

• Tool Qualification. Section 12.2 of RTCA/DO-178B states that qualification of a tool is
needed when processes in RTCA/DO-178B “are eliminated, reduced, or automated by
the use of a software tool, without its output being verified as specified in section 6” of
RTCA/DO-178B. RTCA/DO-178B states, “The objective of the tool qualification
process is to ensure that the tool provides confidence at least equivalent to that of the
process(es) eliminated, reduced, or automated.” (FAA 2003)

Background Context for Tool Qualification
The use of software tools to assist in developing application software has been common practice since the
first assembler program was written to assist in the creation of machine code programs (Salmon 1993).
While the correct functionality of a software tool has always been of a concern to the user of the tool, it is
not typically a concern of the customer of the application. The responsibility for the functionality of the
application is typically left to the application’s developer; the customer is not typically interested in how
the developer actually produced the application software.

However, in the context of applications that have an impact on health or safety, or other high assurance-
related areas such as security, the concerns for correct functionality are much greater. In such domains,
verification of correct functionality under possibly all operating conditions often is not only a concern of
the customer but also of regulatory agencies such as the FAA and FDA. These concerns are formalized in
officially published guidelines such as the FAA’s DO-178B (U.S. DOT 1999). These guidelines form the
basis for FAA approval of software-based avionics applications by establishing software development
process completion and functionality verification criteria that must be met by the application developer in
order to be approved by the FAA for commercial aviation use. These guidelines, DO-178B specifically,
include sections on the use of software tools in the application development process and also introduce
the concept of tool qualification. Consequently, to fully understand the meaning tool qualification and its
impact on the use of TAF and T-VEC, a brief history of its derivation is useful.

 3 of 17

SPC-2003064-MC Version 01.00 October 2003

History of DO-178B (Paraphrased From Johnson [1998])
In the avionics industry, software was initially viewed as an inexpensive and more flexible way to extend
the functionality of mechanical and analog-electrical systems. However, it was quickly realized that the
usual statistical approaches to assess the safety and reliability would not work for flight-critical software.
An alternative means of assessment, one that addressed design errors rather than component failure rates,
was required. From this need, the first version of DO-178 was created.

DO-178

DO-178 was created to provide a basis for software certification by identifying and documenting software
development “best practices,” but it was written primarily at a conceptual level. To be compliant,
applicants for certification were required to meet the “intent” of DO-178, but there were few details about
how to actually do this. Rules of use were developed by trial and error over time. DO-178 was the first to
introduce the concept that software verification requirements were dependent on the safety criticality of
the software. It divided software applications into three categories: critical, essential, and nonessential.

DO-178 also established the relationship between the software certification process and the other relevant
Federal Aviation Regulations (FARs), such as the Type Certification Approval, the Technical Standard
Order (TSO) Authorization, and the Supplemental Type Certification.

DO-178A

While the first version of DO-178 introduced the concept of software certification, the lessons learned
from attempting to apply it quickly pointed out the need for revision. RTCA Special Committee 152 was
formed to produce this revision, DO-178A, which was published in 1985. DO-178A turned out to be very
different from DO-178.

DO-178A described, in systematic and structured detail, software development and verification processes,
something that was deemed missing from DO-178. It maintained the safety categories of software
applications, critical, essential, and nonessential, but also introduced the associated concept of software
certification Levels 1, 2 and 3 corresponding to these criticality categories. This was done to allow for
variance between application criticality and software certification level. The idea was that while an entire
application would be assigned a criticality level, the level of certification effort for the software making
up the application could be reduced according to the system design and implementation techniques. For
example, if adequate partitioning of the design could be shown, some of the software of a critical
application may only need a Level 2 or 3 certification effort, rather than Level 1, because of its lesser role
in the overall functioning of the critical application.

As with DO-178, attempting to apply DO-178A led to many new problems. Interpretation of certification
requirements differed from one FAA region to another. Certification deliverables were frequently
contended between applicants and the certification authorities and misinterpretation of DO-178A’s intent
sometimes led to entire software development life cycles being disallowed because they did not follow
traditional waterfall-like processes. Lastly, there was an overall lack of understanding and appreciation
for the purpose of the certification requirements by the industry in general.

DO-178B

During the time of DO-178A, the avionics industry was undergoing a major shift from analog to digital
systems, and software was being applied in ever larger and more complex applications. Many new

 4 of 17

SPC-2003064-MC Version 01.00 October 2003

vendors of avionics applications came into existence and were now subject to software certification
constraints for the first time. The lack of available DO-178A documentation, training material,
development standards, and experienced people became apparent, and the industry again came to the
conclusion that a new version of DO-178 was needed to address these issues and incorporate the new
lessons learned from application of DO-178A.

To address these concerns, DO-178B was designed to satisfy the following three primary goals.

• Develop objectives for the life-cycle processes
• Provide a description of the activities and design considerations for achieving those

objectives
• Provide a description of the evidence indicating the objectives have been satisfied

The intention was to provide enough information and detail as possible in order to lessen the burden and
increasing demand on the few experienced software certification people that were available.

DO-178B made two more changes: nomenclature for describing safety criticality was changed from
critical, essential, and nonessential to catastrophic, hazardous/severe-major, major, minor, and no effect;
software Levels 1, 2, and 3 were changed to A through E.

One of the more significant aspects of DO-178B was the change made in software verification
requirements. Much greater emphasis was placed on requirements-based testing than in earlier versions.
This was done to reduce or eliminate the practice of focusing software testing primarily on structural (i.e.,
white box) coverage without fully testing the requirements, which would then lead to the need for
additional tests. Requirements-based testing, with emphasis on the structure coverage of these functional
tests, was seen as a more cost-effective and meaningful way to conduct verification testing.

The emphasis on requirements-based testing resulted in a new and significant focus area in DO-178B to
ensure the traceability between requirements, code, and the tests that verify that the code satisfy the
requirements. Traceability evidence is required to be thorough and bidirectional, demonstrating that
requirements trace forward to code and tests and satisfy requirements, and trace backward from tests to
code and to the requirements for which the tests were created. At the higher levels of safety and
criticality, DO-178B requires that this traceability evidence show 100% structural code coverage.

DO-178B requires that verification and traceability evidence be made available for audit and analysis by
the FAA or their DER to support an assessment of completeness and correctness. While this was also true
for prior versions, the enhanced rigor and completeness of verification evidence required by DO-178B
has proven to be a significant burden to the avionics industry.

Some industry representatives have complained that the certification process requires an
inordinate amount of time and expense, with some aspects of that process contributing
little or no value. In particular, the FAA has received numerous complaints about
software aspects of the certification process. (Hayhurst et al. 1998)

The human effort involved in producing the degree of systematically rigorous and complete verification
and traceability evidence required by DO-178B can be overwhelming. In addition, as the complexity
grows, the cost to produce the associated verification evidence grows exponentially with the size of the
application. While tools that provide assistance with development, verification, and traceability have been
utilized and undergone qualification throughout the time frame of DO-178 and its three versions, the tools
designed specifically to meet the demands of DO-178B are being counted on for automated assistance far

 5 of 17

SPC-2003064-MC Version 01.00 October 2003

beyond those of their predecessors. Consequently, the reliance upon such tools without independent
review of their results and artifacts also continues to grow. Thus, the subject of tool qualification takes on
additional weight in the context of DO-178B.

Evolution of Tool Qualification Guidelines
Even though DO-178B was written by a diverse and representative group of industry experts, the
application of DO-178B in practice proved to be very difficult, time-consuming, and expensive. To
address these concerns, the FAA started the SSAC program (Hayhurst et al. 1998). A detailed survey was
widely distributed throughout the portion of the civil aviation community experienced with, and subject
to, DO-178B and the issues of software-based product certification. The survey asked respondents
detailed and wide-ranging questions about their experiences with DO-178B, what its strong points and
weaknesses were, and what the FAA could do to improve how DO-178B was interpreted and applied.

Three workshops were conducted as part of the SSAC program, between January of 1998 and May of
1999, where the survey results were transformed into a set of ten industry recommendations to the FAA.
Section J of the final report on the survey results and recommendations (Hayhurst et al. 1999) applied to
DO-178B, Section 12.2 on tool qualification. The FAA formally responded to these recommendations in
the form of an official letter to the SSAC participants, agreeing to implement the recommendations, and a
detailed list of all of the FAA activities that were either ongoing or already completed that addressed each
of these ten recommendations. One of these activities was the production of a set of guidelines, FAA
Notice N8110.83, specifically addressing tool qualification that were intended to provide clarification to
DO-178B, Section 12.2 (FAA 1999). Recently, in June 2003, this FAA Notice was superceded by FAA
Order 8110.49, Software Approval Guidelines, Chapter 9, Qualification Of Software Tools Using
RTCA/DO-178B (FAA 2003).

Fundamentals of Tool Qualification
Tool qualification starts by addressing two questions: 1) is a specific tool subject to tool qualification and,
if so, 2) what is the tool category? Numerous software tools are used throughout the software
development and maintenance life cycle, but the software developer/vendor need only be concerned with
a subset of these tools, at least as the tool qualification requirements and evidence of compliance. For that
subset of tools, the tool qualification effort involved is determined by the tool’s category type. This
section focuses on these two fundamental aspects of tool qualification.

Tool Requiring Qualification
The concept of tool qualification arose in DO-178 as an alternative means of satisfying software
verification requirements for certification. The concept was that if a tool was capable of providing
sufficient evidence to satisfy DO-178’s software verification requirements in an automated manner, and if
the software developer was able to negotiate this alternate means of verification compliance with the
certification authority, the artifacts produced by the tool would be acceptable in lieu of manual production
of the verification evidence being supplanted. The reliability of the tool in question was central to the
negotiation of acceptance of this alternative means by the FAA. In order for the artifacts produced by the
tool to be relied on and applied for certification credit without further verification review, the tool must be
demonstrated to carry out its intended function reliably. DO-178B, Section 12, defines exactly what
constitutes tool qualification in this context.

 6 of 17

SPC-2003064-MC Version 01.00 October 2003

Tool Categories
The key point in Tool Categories is that only tools whose outputs are to be used directly for certification
credit without additional confirmation need to be qualified. During the development of DO178B’s Section
12, it was realized that there were two fundamentally different types of software tools that would be
governed by tool qualification requirements. These were:

• Development Tools. Tools whose outputs are part of airborne software and thus can
introduce errors.

• Verification Tools. Tools that cannot introduce errors but may fail to detect them.

The premise was that the safety ramifications of a development tool were very different than those for a
verification tool. The development processes and verification evidence required for DO-178B
certification directly depends on the level of negative safety impact that software will have on an
aircraft’s operation. Analogously, the overall effort required to produce the evidence of reliability
necessary to qualify a tool also should depend on how directly a tool’s incorrect operation can affect the
software application being certified. Table 1 shows the general criteria used for tool qualification as it
applies to development and verification tools. Brief explanations of the criteria are provided in Table 1.
For a more complete description of the criteria and associated tool qualification considerations, the
Guidelines for the Qualification of Software Tools Using RTCA/DO-178B are available on the web
(http://www2.faa.gov/certification/aircraft/N8110-91.pdf).

Table 1. Criteria for Tool Qualification

Criteria Development Verification
1 Only deterministic tools may be qualified. Yes Yes
2 Qualification should only be for a specific system. Yes Yes
3 Combined tools should be qualified to DO-178B. Yes Yes

4
Software configuration management and software quality assurance process
objectives should be applied to tools being qualified. Yes Yes

5 Qualification should satisfy the same objectives as the airborne software. Yes No
6 The software level of the tool may be reduced. Yes No
7 A trial period may be used as a means of qualification. Yes Yes
8 Tool Operational Requirements should be reviewed. Yes Yes

9
Compliance with Tool Operational Requirements under normal operating conditions
should be demonstrated. Yes Yes

10
Compliance with Tool Operational Requirements under abnormal operating
conditions should be demonstrated. Yes No

11 Requirements-based coverage should be analyzed. Yes No
12 Structural coverage appropriate for the tool’s software level should be completed. Yes No
13 Robustness testing appropriate for the tool’s software level should be completed. Yes No
14 Potential errors should be analyzed. Yes No

1. Although it is easiest to demonstrate this property if the same output is repeatedly
produced from a set of a given set of inputs, the primary concern is for graphical tools
that would generate code from a graphical representation in a nondeterministic manner.
The ability to establish correctness of the output from the tool is important.

2. Qualification is applied to a particular system certification. Tools cannot be qualified
independently of a system certification.

3. Combined development and verification functions, where the output of both the
development and the verification functions are being used to eliminate, reduce, or

 7 of 17

http://www2.faa.gov/certification/aircraft/N8110-91.pdf

SPC-2003064-MC Version 01.00 October 2003

automate processes of DO-178B, should be qualified irrespective of the other capabilities
present in that tool.

4. Defined configuration management (CM) and software quality assurance (SQA)
processes should be applied to tools being qualified.

5. For development tools only, the processes and artifacts should be developed to the same
level as the airborne software because the resulting artifact will be placed directly into the
certified system without manual inspections or reviews.

6. For development tools only, the software level of the tool can be reduced if evidence can
be provided to demonstrate that the verification process provides coverage to justify the
software level reduction.

7. If the tool has been in use, the historical evidence of the tool can be used as a means for
qualification where a verification of the tool output is performed and tool-related
problems are analyzed, recorded, and corrected.

8. The Tool Operational Requirements should be reviewed in a manner compliant with the
documented quality assurance procedures to ensure correctness, consistency, and
completeness.

9. Demonstration of the tool with its Tool Operational Requirements under normal
operating conditions is typically shown through the use of documented V&V processes,
primarily in the form of test cases or usage scenarios.

10. For development tools only, the tool also must demonstrate compliance with the Tool
Operational Requirements under abnormal operating conditions, including external
disturbances and selected failures in the environment.

11. For development tools only, requirement-based coverage should be demonstrated and
additional tests to complete the coverage of the requirement should be provided, if
necessary.

12. For development tools only, structural coverage pertinent to the software level should be
demonstrated.

13. For development tools only, robustness testing should be demonstrated for complex data
or control flow.

14. For development tools only, analysis of potential errors produced by the tools should be
performed to support the demonstration of the validity of the Tool Qualification Plan.

Tool Qualification Deliverables
The activities to qualify tools used in the product development process need to be planned and
documented. The tool qualification process is part of the software certification process, which is part of an
overall system certification process, as reflected by Figure 1. There are many deliverables required for
the overall system, as well as many deliverables required for the DO-178B certification. One of first
documents delivered to the certification authorities is a Plan for Software Aspects of Certification
(PSAC). The final document is the Software Accomplishment Summary (SAS) that documents
compliance with the PSAC. An applicant qualifying a development tool must provide a separate Tool
Qualification Plan and Tool Accomplishment Summary referenced by entries in the PSAC and the SAS.
An applicant qualifying software verification tools may include information directly in the PSAC and

 8 of 17

SPC-2003064-MC Version 01.00 October 2003

SAS or may choose to provide a separate Tool Qualification Plan and Tool Accomplishment Summary
referenced by entries in the PSAC and the SAS. This is the recommended approach because it provides
the added benefit of providing the ability to reference a data package for reuse in subsequent certifications
or in different certifications where the usage of the tool can be shown to be identical. Entries are required
in the PSAC and SAS for each tool to be qualified.

Figure 1. Tool Qualification
Context

There is no definitive
guidance as to the amount of
data to be submitted to the
FAA for tool qualification.
The data submittals vary
according to the type of tool
being developed. Even though
there are some similar
requirements for the two tool
types, the data requirements
for each tool type are
different. Table 2 summarizes
the required tool qualification

data and indicates whether the data is required to be submitted or available for development or
verification tool qualification. This and the related qualification data can supplement the documentation
required to support tool qualification. Topic Tool Requiring Qualification through Tool Qualification
Accomplishment Summary define and delineate elements of tool qualification.

Plan for Software
Aspect of Certification

Software Accomplishment
Summary

. . .

Plan for Tool
Qualification
Plan for Tool
Qualification

DO-178B (Avionics Software)

Tool Qualification

Tool Operational
Requirements

Tool Operational
Requirements

Tool Qualification
Accomplishment

Summary

Tool Qualification
Accomplishment

Summary
Tool Verification

Results
Tool Verification

Results

Tool Qualification
Development

Data

Development ONLY

Tool Qualification
Development

Data

Tool Qualification
Development

Data

Development ONLY

Software Certification Data

System Certification

Table 2. Tool Qualification Data

Tool Qualification Data Development Verification
Plan for Software Aspects of Certification Submit Submit
Tool qualification plan Submit Recommended
Tool operational requirements Available Available
Verification test results Available Available
Software accomplishment summary Submit Submit
Tool qualification accomplishment summary Submit Submit
Tool qualification development data (e.g., design, code, test cases
and procedures) Available Not required

Tool Qualification Plan

The Tool Qualification Plan describes the tool being qualified, provides references to applicable
documentation, and identifies the activities and tasks necessary to complete the qualification.

Tool Operational Requirements

This document provides the usage context, related system component, and requirements that define the set
of capabilities and functionalities the tools must meet or provide for its intended use. The verification
strategy is defined with each category of requirement. It is often common to include references to user
documentation that is delivered with the tools. User documentation tells the user how to interface with the
tool and should include instructions and commands for using the software, options available, error
messages and resolutions, and limitations of the tool.

 9 of 17

SPC-2003064-MC Version 01.00 October 2003

Verification Test Results

The verification test results may reference tool qualification test cases and procedures that define how the
tool operational requirements will be verified. Each test case should be traceable to the associated
requirements. Each test case should include expected results for each test. The test cases should be
executed per the defined verification procedure, and the results should be reported. All tests must be
successfully executed and passed for the tool to be validated, or there must be a written justification for
why any failure is acceptable. The report of the verification results should be signed (or digitally signed)
and dated by the person responsible for performing the tests.

Tool Qualification Accomplishment Summary
This data item summarizes the results of the tool qualification process, identifies the tool versions and
associated operating environment, and describes and references the relevant tool qualification data.

Tool Qualification Support for TAF and T-VEC
TAF integrates various model development and test generation tools to support defect prevention and
automated testing of systems and software. Although other modeling tools have been developed for TAF,
only those component elements that have tool qualification support are shown in Figure 2. TAF supports
model analysis and test generation for requirement-based tools like the T-VEC Tabular Modeler (TTM),
which is a functional (table-based) modeling tool based on the Software Cost Reduction (SCR) method
(Alspaugh et al 1992). TAF also supports model analysis and test generation for design-based modeling,
simulation, and code-generation tools such as MATRIXx and MathWorks’ Simulink and Stateflow tools.
Each of these tools integrates with T-VEC through a translator, which transforms each respective model
into a form suitable for processing by T-VEC. Once a model is translated, users can generate tests using
T-VEC through a graphical user interface (GUI) or command-line interface. Therefore, for a specific
usage of TAF, tool qualification is required for the model tool translator (i.e., Simulink, MATRIXx, or
TTM) and for T-VEC. The qualification is categorized as a verification type qualification because the
output of the process generates tests that are used to verify the code produced by the autocode generation
systems associated with Simulink or MATRIXx, or manually produced code.

Figure 2. TAF Integrated
Components

T-VEC Test
Vector Generation

System

Execution and
Results Analysis

Model-based
Coverage
Analysis

Test
Generation

Test Driver
Generation

Execution and
Results Analysis

Model-based
Coverage
Analysis

Test
Generation

Test Driver
Generation

MATRIXx
T-VEC

Tabular Modeler Simulink

Functional Tabular Control System/State Machine/Hybrids

T-VEC Graphical
User Interface

Console
Interface

Requirement-based Design-based

Modeling
Tools

Process Roles and Flows
This section provides an overview
of the process roles and flows for
using T-VEC in conjunction with
the modeling tool. It describes
how the tools are used to develop
requirement models in TTM,
translate the models into a form
suitable for test vector generation,
generate test vectors, generate test
drivers, and perform execution
and results analysis.

 10 of 17

SPC-2003064-MC Version 01.00 October 2003

Test Driver

mapping

schema

Test Driver

mapping

schema

Requirement Analysis
and Clarification T-VEC Tabular Modeler

Test Vectors T-VEC
Test Driver
Generator

Interfaces
Data Types
Variables
Constants

Behavior
Conditions

Events
State machines

Functions

SRS

Function
List

Change
Request

Requirements
(come in many forms)

Test Execution Environment

+

Simulator, Workstation, Target

• C, C++, SQL
• Java – GUI, JDBC- Oracle
• Perl - ODBC - Oracle and Interbase
• Other languages PLI, JCL, Ada
• Proprietary, WinRunner, DynaComm, etc.

Test Automation
Architect Role

Modeler Role

Generate Test Vectors
to automate test case design

Figure 3. Process Roles and Flows

Figure 3 illustrates a typical process for using T-VEC with TTM. The process identifies the typical
organizational roles of a requirements engineer (sometimes referred to as a system engineer who performs
requirement analysis and document requirements), designer/implementer (system/software architecture
who performs design and implementation), and test engineer (performs verification and some validation).
Team members can perform one or more roles.

In this example, TTM is used to develop the verification models. Verification modeling typically exposes
requirements weaknesses or problems very early. The modeling process and tools support defect
prevention very early in the development process when it is least expensive to resolve. Testing the
integrity of the requirements through modeling and model analysis becomes continuous and helps ensure
the best possible starting point for downstream development. As the system design and implementation
become available, the verification models are used as the basis for automated test case and test driver
generation. This approach helps ensure that requirements are well formed through modeling and model
analysis and then leverages the requirements model in automatic test generation.

For design-based modeling approaches, the process tends to resemble the illustration in Figure 4.
Simulink/Stateflow and MATRIXx are hybrid, control system modeling and code generation tools. In this
scenario, models undergo translation and static analysis to verify their integrity. Model problems are
reported to the engineer responsible for constructing the model for immediate correction. Once modeling
is complete, the model is used as the basis for developing tests. Through dynamic analysis (i.e.,
execution) of the system, anomalies in the model and implementation can be identified and corrected.

 11 of 17

SPC-2003064-MC Version 01.00 October 2003

Figure 4. Simulink/Stateflow and
MATRIXx Modeling Process Flow

Application of TAF and T-
VEC
Depending on the software level
of the system being considered for
certification, the decision flow
shown in Figure 5 may be
required to provide evidence that
the model is defect free and that
the generated tests provide the

required level of code coverage. Details associated with several of these steps are provided below. The
process is a follows:

Test
Drivers

Test
Vectors

Model
Analysis &
Coverage

Test Results
Analysis

Simulink/Stateflow
or

MatrixX
Model

T-VEC
Specifications

Execution
Environment

Test
Results

Autocode
Source Code

Source Code
Created by Hand

Simulink or
MATRIXx

SL2TVEC or
MX2TVEC T-VEC

• Construct a model in Simulink, MATRIXx, or TTM.
• Check the model for defects and iteratively correct the model if there are defects (see

Process Roles and Flows for details).
• Construct the code. This can be a manual process or can be supported using autocode

generation capabilities supported by tools like Simulink and MATRIXx.
• Generate the tests.
• Execute the tests through instrumented code. This may be an optional step (see Code

Coverage for details).
• Check to ensure that the tests provide adequate coverage (e.g., MC/DC coverage); if

adequate coverage is not achieved, additional tests must be generated.
• Check to ensure that all tests pass.
• Execute tests against target code.
• Check to ensure that all tests pass.
• If tests do not pass, perform test failure analysis, and correct the code or model.

Figure 5. Verification Decision
Flow

Generate
tests

ModelModel

CodeCode

Model
defect?yes

no

Test
instrumented

code
Meets test
coverage?

Test
code

yes
All tests
pass?

no

yes

All tests
pass?

yes
Success

Code
defect?

yes
no

no

Model Defect Analysis

One distinguishing
characteristic of the T-VEC
system is its ability to identify
model defects. Consider Figure
6, which shows a simple
Simulink model, with the two
highlighted paths. The model
analysis of T-VEC ensures all
paths (two in this case) are
valid, which means that code

 12 of 17

SPC-2003064-MC Version 01.00 October 2003

generated from the model is reachable. Without this capability, models can be used to generate code
automatically, but the results of executing that code under certain conditions are undefined. This
particular capability provides certification authorities with increased confidence as to the integrity of the
model.

Figure 6. Model Paths

Code Coverage

Another important criterion for critical
software is to provide assurance that the tests
provide the required level of code coverage.
There are various ways to provide this
assurance, and there are some qualified tools
that provide code coverage measurements.
The typical process is to instrument the code

that is produced manually or through code generation, then execute the tests against the instrumented
code and assess the code coverage. Consider the model shown in Figure 7 and the associated code
coverage information shown in Figure 8, which indicates that 12 out of the 12 paths were covered by the
generated tests. If all tests pass, and there is complete code coverage, then there is a strong argument that
the code fully satisfies the specified functionality of the model. The final step for testing the code is to run
the same tests through target code that will be the final certified code. If all tests pass, there is a strong
argument that the code is suitable for certification.

TRUE (x >= y)

FALSE (x >= y) implies (y > x)

Figure 7. Simple Model for Code Coverage
Example

Qualification of T-VEC
T-VEC has been used to support verification
and validation of flight-critical, real-time
embedded systems since 1989. T-VEC was
applied to a portion of a Traffic and
Collision Avoidance System (TCAS), which
was first FAA-certified in March of 1990.
T-VEC was applied to the entire MD90
(McDonnell Douglas) Electrical Power
System Variable Speed Constant Frequency
(VSCF) system that was FAA-certified in

January of 1995. T-VEC also was used in developing component libraries for a family of avionics display
systems. T-VEC also has been used in FDA certifications. T-VEC has an up-to-date qualification suite
that was applied in all prior FAA and FDA certifications. The qualification suite is compliant with FAA
Software Approval Guidelines, 8110.49, Chapter 9, Qualification Of Software Tools Using RTCA/DO-
178B.

The T-VEC qualification package includes a set of operational requirements that trace to formal
specifications and associated tests to verify each component of the T-VEC system, including the
compiler, test generator, coverage analysis, and test driver components. In addition, tests are performed to
demonstrate that the various operations and parameters that control these components operate properly.

 13 of 17

SPC-2003064-MC Version 01.00 October 2003

Analysis has been performed to ensure that the supported data types, language constructs, and a
comprehensive set of subsystem integration tests have been verified. The outputs are verified manually,
and all source specifications, tests, and test results are controlled within a CM system.

Figure 8. Coverage Analysis
Screenshot1

Qualification of TTM
The key capabilities required
for normal use of the TTM
modeling system are the
primary focus of the TTM
qualification. Functionality of
the tools that contribute to the
TTM modeling and its related
integration to support test
vector generation,
requirement-based coverage
analysis, and test driver
generation are in scope of the

qualification. All other user functionality that is not directly related to the production of test vectors and
test drivers is not in the scope of the TTM qualification (e.g., model searching features).

Screenshots from Bullseye Coverage

The primary focus for the TTM qualification is to ensure that the model translator provides a well-formed
representation of each type of modeling construct. The TTM model translator converts a model, which is
composed of tables of functions, conditions, events, and modes, into a test specification model. The TTM
modeling language and constructs rely on a subset of the capabilities of the T-VEC system because the
TTM language is currently not as expressive as the T-VEC specification language.

In a manner similar to the T-VEC qualification, the specification and associated tests cover the modeling
language and data types that are mapped to the constructs of T-VEC specification language. The
verification of these constructs has been verified in the T-VEC qualification. The purpose of the tests
associated with these requirements is to demonstrate that each construct for each data type is properly
translated into a valid T-VEC representation. Requirement traceability has been verified to ensure that
each specified TTM requirement is translated into a T-VEC specification that will result in test vectors to
cover that requirement. The basic approach to the specification supports automated testing, with
automated results comparison. The results have been validated manually, and all artifacts are
configuration controlled.

Qualification of Simulink and Stateflow Translator
The tool qualification for the Simulink and Stateflow translator is under development at the time of
writing this document, but the philosophy of this translator is the same as that of the TTM translator. The
objective is to ensure that all constructs that can be represented in the Simulink and Stateflow are
completely and consistently translated to a T-VEC specification. In addition, there are a number of

1 Use of the Bullseye coverage tool shown in Figure 8 does not imply endorsement of this tool.

 14 of 17

SPC-2003064-MC Version 01.00 October 2003

translation features that can be specified in the translation interface to enable various types of structural
and decision coverage over various modeling constructs of the Simulink and Stateflow language. The
following summarizes some verification categories for the tests of the qualification suite:

• Primitive blocks (modeling constructs) tests exercised with coverage options
• Subsystem integration coverage tests
• Signal range propagation tests
• Inline tests
• Test driver generation tests
• Test sequence tests

Qualification of MATRIXx Translator
The tool qualification for MATRIXx was developed several years ago, and tool development was
abandoned. However, in 2003, National Instruments purchased the tool. As the MATRIXx development
is resurrected by National Instruments, the associated qualification suite for MATRIXx will have the
same type and level of completeness as that of the Simulink and Stateflow qualification package.

Qualifying TAF and T-VEC for a Project
This section summarizes the steps for planning, executing, and documenting the key steps to support a
tool qualification on a project. The process for qualifying TAF and T-VEC on a project involves the
following:

• Reference a Tool Qualification Plan for each tool to be used in the certification process in
the PSAC. Indicate that the tool type is verification.

• Ensure that the intended use of each tool is compliant with the Tool Qualification
Requirements for that tool used to support the certification.

• Demonstrate and document that the verification evidence for the software involved in the
certification has been properly verified by qualified tools that have applicable tool
qualification accomplishment summaries.

• Ensure that the configuration index includes references to the versions of the tools that
have been supplied in the tool qualification accomplishment summary.

• Provide a tool qualification accomplishment summary for each tool with the Software
Accomplishment Summary at the completion of the certification.

Summary
These guidelines describe the history and evolution of the certification process. The increased complexity
of systems has led to increased complexity and cost of the verification process. This has increased the
need and associated use of automated tools to support the development and verification for certification of
software-intensive systems. The requirements on tools, and their associated qualification requirements
imposed by DO-178B, have not been completely or consistently understood by developers of the software
systems that must be qualified. This document provides a summary of these tool qualification
requirements and explains how TAF and T-VEC tools have been developed with tool qualification suites
that should aid applicants in the certification process. Finally, it is important to remember that the burden
of tool qualification is on the organization applying for certification, rather than on the vendor of the

 15 of 17

SPC-2003064-MC Version 01.00 October 2003

software tool being qualified, because a tool’s application and reliability is directly related to the product
developer’s use of the tool rather than the generic capabilities of the tool. However, the existing tool
qualification suites should reduce the cost of developing these tool qualification suites significantly.

For More Information
Members with general questions or comments on any of the topics in this paper or related topics, or
members interested in applying TAF with Consortium assistance, should contact the author or their
member account director (see http://www.software.org/pub/keycontacts.asp).

For more on TAF, see the Consortium’s TAF website at http://www.software.org/pub/taf/testing.html, or
contact the authors.

References
Alspaugh, T.A., S.R.
Faulk, K.H. Britton,
R.A. Parker, D.L.
Parnas, and J.E. Shore
1992

“Software requirements for the A-7E aircraft,” Tech. Rep. NRL/FR/5546-92-
9194, Naval Research Lab., Washington DC.

Busser, R.D., M.R.
Blackburn, A.M.
Nauman
2001

Automated Model Analysis and Test Generation for Flight Guidance Mode
Logic, Digital Avionics System Conference.

Hayhurst, Kelly J., C.
Michael Holloway,
Cheryl A. Dorsey, John
C. Knight, Nancy G.
Leveson, G. Frank
McCormick, and
Jeffery C. Yang
1998

Streamlining Software Aspects of Certification: Technical Team Report on the
First Industry Workshop. NASA/TM-1998-207648, April.

Hayhurst, Kelly J.,
Cheryl A. Dorsey, John
C. Knight, Nancy G.
Leveson and G. Frank
McCormick
1999

Streamlining Software Aspects of Certification: Report on the SSAC Survey,
NASA/TM-1999-209519, August.

Johnson, Leslie A.
(Schad)
1998

DO-178B,"Software Considerations in Airborne Systems and Equipment
Certification" STSC Crosstalk, October.
http://www.stsc.hill.af.mil/crosstalk/1998/10/

 16 of 17

http://www.software.org/pub/keycontacts.asp
http://www.software.org/pub/taf/testing.html

SPC-2003064-MC Version 01.00 October 2003

Kelly, V., E.L. Safford,
M. Siok, M. Blackburn
2001

Requirements Testability and Test Automation, Lockheed Martin Joint
Symposium, June.

Radio Technical
Corporation for
Aeronautics Special
Committee 167
(RTCA)
1992

DO-178B/ED-12B - Software Considerations in Airborne Systems and
Equipment Certification, December.

Salmon, David
1993

Assemblers And Loaders, Ellis Horwood Ltd (Ellis Horwood Series in
Computers and Their Applications) Market Cross House, Cooper Street,
Chichester, PO19 1EB, West Sussex, UK. ISBN 0130525642.

Statezni, David
2000

Test Automation Framework, State-based and Signal Flow Examples, Twelfth
Annual Software Technology Conference.

2001 T-VEC’s Test Vector Generation System, Software Testing & Quality
Engineering, May/June.

U.S. Air Force
2001

Global Air Traffic Management and Navigation Safety Certification For USAF
Aircraft, Air Force Policy Directive 63-13, March.

U.S. DOT (FAA)
1999

Federal Aviation Administration, Order 8110.83 -Guidelines For The
Qualification Of Software Tools Using RTCA/DO-178B, April.

2003 Federal Aviation Administration, Order 8110.49 - Software Approval
Guidelines, June.

U.S. Food and Drug
Administration (FDA)
2002

General Principles of Software Validation; Final Guidance for Industry and
FDA Staff, January.
http://www.fda.gov/cdrh/comp/guidance/938.html

 17 of 17

	Guidelines for Software Tool Qualification
	Abstract Contents
	Introduction
	Scope
	Audience and Benefits
	Organization of This Paper
	Definitions

	Background Context for Tool Qualification
	History of DO-178B (Paraphrased From Johnson [1998])
	DO-178
	DO-178A
	DO-178B

	Evolution of Tool Qualification Guidelines

	Fundamentals of Tool Qualification
	Tool Requiring Qualification
	Tool Categories
	Tool Qualification Deliverables
	Tool Qualification Plan
	Tool Operational Requirements
	Verification Test Results
	Tool Qualification Accomplishment Summary

	Tool Qualification Support for TAF and T-VEC
	Process Roles and Flows
	Application of TAF and T-VEC
	Model Defect Analysis
	Code Coverage

	Qualification of T-VEC
	Qualification of TTM
	Qualification of Simulink and Stateflow Translator
	Qualification of MATRIXx Translator

	Qualifying TAF and T-VEC for a Project
	Summary
	For More Information

	References

