
Copyright © 2013, KnowledgeBytes, LCC. Or Mark R. Blackburn, Ph.D.

www.KnowledgeBytes.net

Collaborative Requirements Engineering
for Smart Manufacturing System

Verification and Validation
Prepared for NASA IV&V Workshop – August 19, 2013

Mark R. Blackburn, Ph.D.

Peter Denno (NIST)

Copyright © 2013, Mark R. Blackburn, Ph.D. or Knowledge Bytes, LCC.

•  11 years building flight-critical
avionics software and applying
model-based software tools to
automate test generation

•  19+ years experience in building
modeling and analysis tools,
commercial consulting, &
entrepreneurial endeavors

•  Researching Domain-Specific
Modeling and model-based V&V
approaches for autonomous
adapting systems (e.g., robots)

•  Notable Accomplishment:
Discovered Mars Polar Lander
Error in Fewer Than 24 Hours

About the Presenter:
Mark R. Blackburn, Ph.D.

1

Copyright © 2013, Mark R. Blackburn, Ph.D. or Knowledge Bytes, LCC.

Outline
•  Part 1: Overview

–  Context and problem
–  NIST Collaborative Requirement Engineering (CRE) objective
–  Project objective

•  Part 2: Approach
–  Leveraging Domain Specific Modeling (DSM)
–  Rationale

•  Part 3: Design and usage details
–  Analysis and test generation
–  Operational scenarios
–  Demonstration

•  Summary
–  Broader impacts and relevance to NASA

2

Copyright © 2013, Mark R. Blackburn, Ph.D. or Knowledge Bytes, LCC.
3

Part 1: Overview

Context and Problem

NIST Objectives

Project Objectives

Copyright © 2013, Mark R. Blackburn, Ph.D. or Knowledge Bytes, LCC.

4

Smart Manufacturing will enable
development and V&V of Cyber-Physical Systems

with increasing computational capabilities that will
manage critical infrastructure

Copyright © 2013, Mark R. Blackburn, Ph.D. or Knowledge Bytes, LCC.

Context (1/2) – Example CHL System
Breakdown Specification

5

Closed loop, Heat transfer, Liquid circulating (CHL)

Includes

May also include:
•  System Requirements Tree
•  System Requirements
•  Component Requirements
•  Interface Requirements

Copyright © 2013, Mark R. Blackburn, Ph.D. or Knowledge Bytes, LCC.

Context (2/2) - Current Process Relies
Heavily on Paper-based Specifications

•  Product data sheets provide information that specifies
functional and physical characteristics of a component of
a system, plant or facility

6

Product Data Sheet

Copyright © 2013, Mark R. Blackburn, Ph.D. or Knowledge Bytes, LCC.

Problem
•  As components (e.g., pumps, values, heat exchanges,

piping, etc.) in facilities wear out, new components are
substituted
–  Common for original requirements or design to not exist
–  May not to know how current facility implementation deviates

from original design or requirements

•  Concern that newly substituted component can create
potential operational or safety issues of overall facility
(e.g., produce too much heat, incorrect input/output
pressure)

7

Copyright © 2013, Mark R. Blackburn, Ph.D. or Knowledge Bytes, LCC.

NIST CRE Objective
•  Develop, extend and apply formal methods of

requirements representation and demonstrate
framework, protocols, data models, and tools for
collaborative requirements engineering to support
process facility design (aka “smart” manufacturing)

•  A key focus of the research area is to apply formal
methods to requirements engineering
–  A formal method is a method on which the rules of inference can

be shown mathematically to be valid

•  Benefits
–  Improved system validation
–  Ability to better trace rationale
–  Improved systems engineering

8

Copyright © 2013, Mark R. Blackburn, Ph.D. or Knowledge Bytes, LCC.

Project Objective
•  Develop formal method representation of systems and

requirements that facilitates management of
requirements and generation of tests from requirements
specifications
–  Support automating generation of system tests
–  Describe logical structure of envisaged system (its components

and their interconnection)
–  Describe how interaction of components achieves system goals

•  Apply formal method of representation to a closed-loop
liquid circulating heat transfer (CHL) system

•  Use resulting model and tooling to:
–  Analyze requirement/design specifications/models
–  Generate tests
–  Demonstrate traceability of tests to corresponding requirements

9

Copyright © 2013, Mark R. Blackburn, Ph.D. or Knowledge Bytes, LCC.
10

Part 2: Approach

Rationale

Design Theme:
 Leveraging Emerging and Enabling Technology

Domain Specific Modeling Languages and Tools

Copyright © 2013, Mark R. Blackburn, Ph.D. or Knowledge Bytes, LCC.

Approach: Key Themes
•  Leverage Domain-Specific Modeling (DSM) Language

–  Provides relevant and intuitive graphical abstraction for the
specific domain or subdomain

–  Allows for rich semantics required for formal analysis and test
generation necessary for V&V effectiveness and efficiency

–  Addresses deficiencies in general purpose modeling approaches

•  DSM tooling allows multiple views to be integrated
–  Model transformation built into the tools
–  Model languages are evolvable

•  Integrates with formal analysis and test generation tools
–  Test generation provides effective test method
–  Formal methods hidden behind the scenes

11

Copyright © 2013, Mark R. Blackburn, Ph.D. or Knowledge Bytes, LCC.

MODEL-BASED ADAPTATION OF FLIGHT-CRITICAL SYSTEMS, Sumit Ray, BAE Systems, Johnson City, New York, Gabor Karsai, Vanderbilt
University, Nashville, Tennessee, Kevin M. McNeill, BAE Systems, Arlington, Virginia, Digital Avionics Systems Conference, 2009

Producible Adaptive Model-based Software (PAMS) technology to the development of safety critical flight
control software. PAMS has been developed under the Defense Advanced Research Projects Agency (DARPA)
Disruptive Manufacturing Technologies program. Contract # N00178-07-C-2011.

Based on Demonstrated DSM Pattern
from DARPA Sponsored Research

•  DSM are easily evolvable
•  Integrated analysis and test generation help in validating

evolution of DSM modeling environment

T-VEC
Vector Generation System (VGS)

Flight Control
Domain-Specific Language

Copyright © 2013, Mark R. Blackburn, Ph.D. or Knowledge Bytes, LCC.

Prototype Design integrates DSM with
Formal Methods Tools

13

T-VEC Tabular Modeler (TTM) and
T-VEC Vector Generation System (VGS)

Domain Specific Modeling (DSM)
for Process Facility Design

•  Model transformation
•  Formal methods analysis

•  Theorem proving
•  Property checking

•  Test vector generation
•  Test driver generation
•  Requirement-to-test traceability

TTM VGS

Copyright © 2013, Mark R. Blackburn, Ph.D. or Knowledge Bytes, LCC.

Two Different View: Structural with
Flow Properties and Behavioral

14

Same objects: different
views used to formalize
different aspects of the system

Behavioral constraint:
if valve is closed then
 pump should be closed
else if value is open then
 pump can be open

Copyright © 2013, Mark R. Blackburn, Ph.D. or Knowledge Bytes, LCC.
15

Part 3: Design and Usage Details

Analysis and test generation

Operational scenarios

Demonstration

Copyright © 2013, Mark R. Blackburn, Ph.D. or Knowledge Bytes, LCC.

Formalize Component Behaviors and
Properties and Composed System

16

Formalize
characteristics

 elements
Formalize

relationships of
composed
elements

Copyright © 2013, Mark R. Blackburn, Ph.D. or Knowledge Bytes, LCC.

DSM Captures Component Properties
(example includes seeded defect)

17

Potential
Flow rate

Issue

Copyright © 2013, Mark R. Blackburn, Ph.D. or Knowledge Bytes, LCC.

Model and Tests must cover all Flow
Paths (partial view shown)

18

Copyright © 2013, Mark R. Blackburn, Ph.D. or Knowledge Bytes, LCC.

Model Transformation for Prototype
Based on Pipe and Junction Relations

19

1697

2110

2095

2207

Junction
2090

2306

Copyright © 2013, Mark R. Blackburn, Ph.D. or Knowledge Bytes, LCC.

DSM Tool Includes Programmable
Generator for Transforming Models

20

Transformed
Requirements

And
Component

Specifications

Detailed Behavior
Needed

for Analysis
and

Test Generation
(hidden)

Copyright © 2013, Mark R. Blackburn, Ph.D. or Knowledge Bytes, LCC.

Model Analysis and Test Generation
Project Status

21

Reflects Seeded Defect
(see next slide for

Demo details)

Copyright © 2013, Mark R. Blackburn, Ph.D. or Knowledge Bytes, LCC.

Demonstration: Identify Seeded Defect
between Valve and Heat Exchanger

22

Potential
Flow rate

Issue

2306

Copyright © 2013, Mark R. Blackburn, Ph.D. or Knowledge Bytes, LCC.

Detailed Error Report Shows Flow rate
Inconsistency

23

Hyperlink to detailed error

We are investigating
alternatives to bring

error information back
to DSM Tool and Model

Views

Copyright © 2013, Mark R. Blackburn, Ph.D. or Knowledge Bytes, LCC.

Model Analysis Links Defect
(Unsatisfiable Constraint) to Model

24

Hyperlink to model defect

Copyright © 2013, Mark R. Blackburn, Ph.D. or Knowledge Bytes, LCC.

Satisfiable Model Constraints Have Generated
Test with Requirement Traceability

25

Link Requirement ID in the
Model, and Requirement ID

traced to generated test

Copyright © 2013, Mark R. Blackburn, Ph.D. or Knowledge Bytes, LCC.

Test Driver Languages

Test Driver Generation to Many
Languages and Environments

• SQL/ODBC/JDBC
• XML
• SOAP
• WinRunner
• JCL
• Perl
• Python
• C++
• Ada
• Basis and VB
• Custom (graphics)
• Assembler
• Java
• VectorCAST
• shell
• command languages
• emulators
• proprietary
• more . . .

Host emulations and
integrated simulation

Test Driver
Generation

Matlab Simulation

Target
Windriver Workbench,
 GreenHills Multi IDE

Example

26

Copyright © 2013, Mark R. Blackburn, Ph.D. or Knowledge Bytes, LCC.

Summary
•  See following slide for Relevance to NASA
•  DSM languages provide for graphically intuitive

approaches to integrate domain-specific views across
related engineering disciplines

•  DSMs provide enabling technologies that integrate
generators to support tool chain integration leveraging
test generation and analysis tools

•  DSM are evolvable allowing the modeling capabilities to
keep pace with changing technologies

•  Tool chains provide greater V&V coverage by leverage
the most effective tools for test generation leading to
greater efficiencies for V&V and software/systems
engineering

27

Copyright © 2013, Mark R. Blackburn, Ph.D. or Knowledge Bytes, LCC.

DSM Transformation to Formal Analysis
and Test Tools Maps to ITC Capability

28

Technology
& Methods

Evidence
Needs

1

2

3

4

5

ITC Capability
A

B

C

D

E

Model
transformation

Formal
analysis and

test generation

DSM

GNC
(Simulink)

Redundancy
Management

Communication

Fault
Management

Command
Processing

Test beds,
Resources, &
Environments

Independent Test Capability (ITC)

Copyright © 2013, Mark R. Blackburn, Ph.D. or Knowledge Bytes, LCC.

Thank You
•  For more information contact:

–  Mark R. Blackburn, Ph.D.
–  www.markblackburn.com
–  Blackburn@knowledgebytes.net
–  703.431.4463

29

Copyright © 2013, Mark R. Blackburn, Ph.D. or Knowledge Bytes, LCC.

Backup

30

Copyright © 2013, Mark R. Blackburn, Ph.D. or Knowledge Bytes, LCC.

TDM Module
Interfaces

5 KM
TDM_started = TRUE

40 Meters
CMD_disable_enable = enable

Leg
Sensors

TDM
Module

Executive

CMD_disable_enable
TDM_started

Sensor Value
for Each of Three

Legs

Touchdown Monitor (TDM)
 Textual Requirements

Mars Lander Descent Path
(No input from Lockheed Martin) - 2000

35 Million Miles at cost of $165 Million - 40 Meters from landing

Mars Surface

Notable	 Accomplishment:	 Discovered	 Mars	 Polar	
Lander	 Error	 in	 Fewer	 Than	 24	 Hours	

31

Copyright © 2013, Mark R. Blackburn, Ph.D. or Knowledge Bytes, LCC.

“Idealized”	 View	 of	 Model-‐Driven	 Engineering	

Models

Structure/Interfaces

Behavior (functions)

Concurrency

Resources/Environment

Configuration Management
(Based completely on the Models)

Transformation
Transformation

Transformation

Analysis/
Model Checking/

Proof of Properties

Modelers

Domain Experts
(Requirements)

Simulation

Host

Target

Test
Automation

Verification Evidence

Model Validation
& Verification

 Evidence
Complete Traceability

32

Copyright © 2013, Mark R. Blackburn, Ph.D. or Knowledge Bytes, LCC.

Benefits	 Model-‐Driven	 Engineering	

•  Models represent requirements & design information
independent of language, platform, and architecture

•  Models are easier to understand than underlying code
–  Supports ability to build larger, more complex systems and

improve maintainability

•  Usually leverages code generation patterns proven over
time – supporting more robust design

•  Promotes iterative application development to better
assess design/implementation early
–  Getting the right system - sometimes supported by simulation

and visualization

•  Tests and documentation are byproducts

33

Copyright © 2013, Mark R. Blackburn, Ph.D. or Knowledge Bytes, LCC.

Global init;
Forall tests

 init target;
 set inputs;
 execute SUT;
 get outputs;
 store output;

endforall

Test Vector
Generator

Test Driver
Generator

Model
Translator

Model

Test Environment

Modeler
(Tester)

Requirements
Engineer

Designer/
Implementer

Design
spec

Requirements
specification

Test Result
Analyzer

Test
Analysis

Test results
compared

against
expected

results

Test Script is Generated
from Translated Model
and Generated Tests

Modeler captures
required behavior and

logical variations of
data and control in
terms of interfaces

Test driver schemas
define a pattern for

generating test scripts

Test Driver
Object Mappings

Requirement-Driven Model-based Process and the
Key Development Roles	

34

