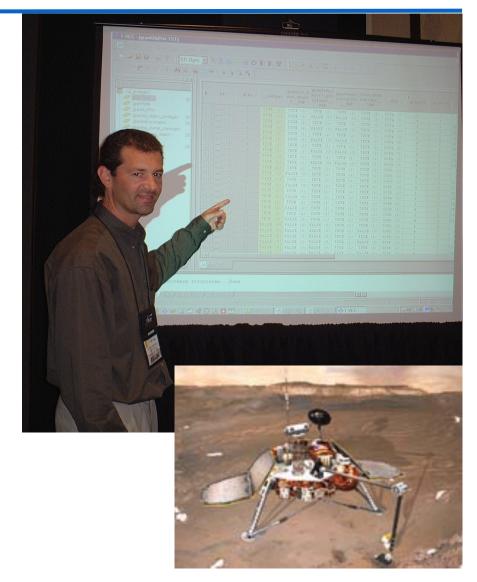


for the best ideas in information technology

www.KnowledgeBytes.net

Collaborative Requirements Engineering for Smart Manufacturing System Verification and Validation

Prepared for NASA IV&V Workshop – August 19, 2013


Mark R. Blackburn, Ph.D. Peter Denno (NIST)

Copyright © 2013, KnowledgeBytes, LCC. Or Mark R. Blackburn, Ph.D.

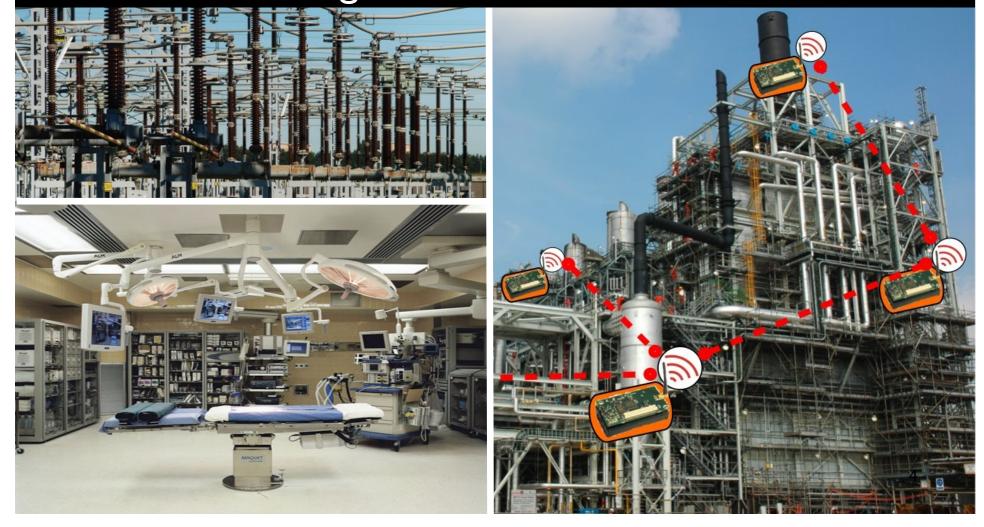
About the Presenter: Mark R. Blackburn, Ph.D.

- 11 years building flight-critical avionics software and applying model-based software tools to automate test generation
- 19+ years experience in building modeling and analysis tools, commercial consulting, & entrepreneurial endeavors
- Researching Domain-Specific Modeling and model-based V&V approaches for autonomous adapting systems (e.g., robots)
- Notable Accomplishment: Discovered Mars Polar Lander Error in Fewer Than 24 Hours

• Part 1: Overview

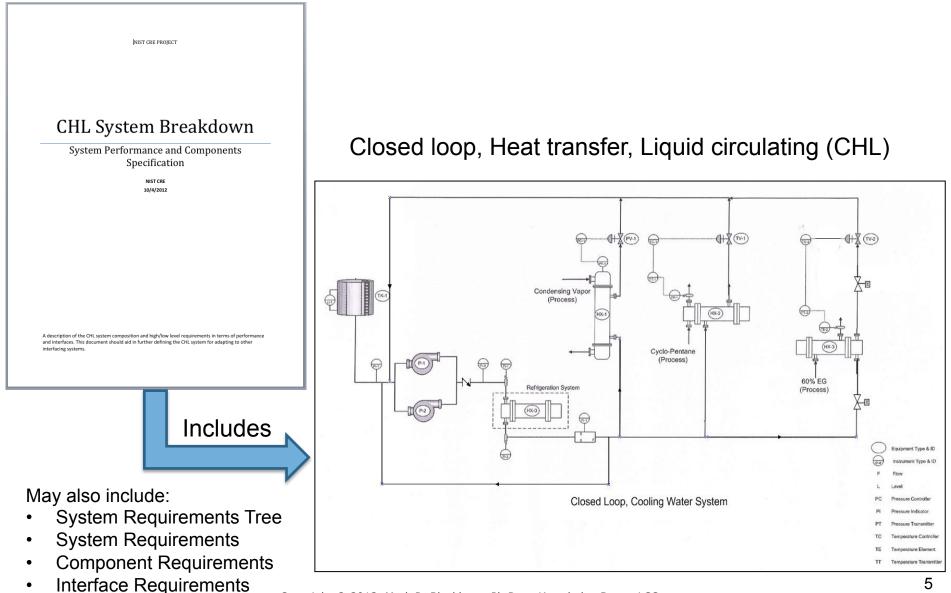
ЖВ

- Context and problem
- NIST Collaborative Requirement Engineering (CRE) objective
- Project objective
- Part 2: Approach
 - Leveraging Domain Specific Modeling (DSM)
 - Rationale
- Part 3: Design and usage details
 - Analysis and test generation
 - Operational scenarios
 - Demonstration
- Summary
 - Broader impacts and relevance to NASA


Part 1: Overview

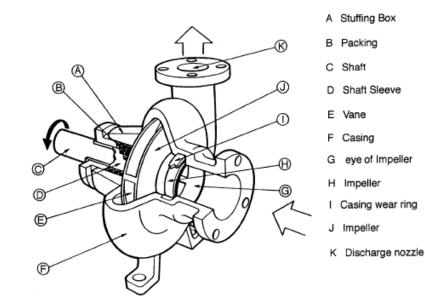
Context and Problem

NIST Objectives


Project Objectives

Smart Manufacturing will enable development and V&V of Cyber-Physical Systems with increasing computational capabilities that will manage critical infrastructure

Context (1/2) – Example CHL System Breakdown Specification


Copyright © 2013, Mark R. Blackburn, Ph.D. or Knowledge Bytes, LCC.

B Context (2/2) - Current Process Relies Heavily on Paper-based Specifications

 Product data sheets provide information that specifies functional and physical characteristics of a component of a system, plant or facility

CENTRIFUGAL PUMP API-610 DATA SHEET MKS UNITS	JOB NO. ITEM NO. REQ / SPEC No. / PURCH ORDER No. DATE INQUIRY No. BY
1 APPLICABLE TO: O PROPOSAL O PURCHASE AS 2 FOR: 3 SITE:	BUILT
4 NO. REQPUMP SIZE	TYPE:NO. STAGES
5 MANUFACTURER	MODEL: SERIAL No
6 NOTES: INFORMATION BELOW TO BE COMPLETED O BY PURCH	ASER BY MANUFACTURER OR BY MANUFACTURER OR PURCHASER
7 O GENER	AL
8 PUMPS TO OPERATE IN (PARALLEL) No. MOTOR DRIVEN	No. TURBINE DRIVEN
9 (SERIES) WITH PUMP ITEM No	
10 GEAR ITEM No	TURBINE ITEM No.
11 GEAR PROVIDED BY MOTOR PROVIDED BY	
12 GEAR MOUNTED BYMOTOR MOUNTED BY	TURBINE MOUNTED BY
13 GEAR DATA SHT. NoMOTOR DATA SHT. No	TURBINE DATA SHT. No.
4 OPERATING CONDITIONS	SITE AND UTILITY DATA (COT'D)
5 CAPACITY NORMAL (m³/h) RATED (m³/h) 16 OTHER	CHLORIDE CONCENTRATION (PPMW)
17 O SUCTION PRESSURE MAX/RATED /(Kg/cm ² g)	INSTRUMENT AIR: MAX / MIN PRESS / (Kg/cm ²)
18 O DISCHARGE PRESSURE (Kg/cm ² g)	LIQUID
19 O DIFERENTIAL PRESSURE (Kg/cm ² g)	O TYPE OR NAME OF LIQUID
20 O DIFF. HEAD (m) NPSHA (m)	O PUMPING TEMPERATURE:
21 O PROCESS VARIATIONS	
22 O STARTING CONDITIONS	_ O VAPOR PRESSURE(Kg/cm ²)(°C)
23 SERVICE: O CONT. O INTERMITTENT (STARTS/DAY)	RELATIVE DENSITY (SPECIFIC GRAVITY):
24 O PARALLEL OPERATION REQ'D	NORMAL MAX MIN

Product Data Sheet

Problem

- As components (e.g., pumps, values, heat exchanges, piping, etc.) in facilities wear out, new components are substituted
 - Common for original requirements or design to not exist
 - May not to know how current facility implementation deviates from original design or requirements
- Concern that newly substituted component can create potential operational or safety issues of overall facility (e.g., produce too much heat, incorrect input/output pressure)

NIST CRE Objective

- Develop, extend and apply formal methods of requirements representation and demonstrate framework, protocols, data models, and tools for collaborative requirements engineering to support process facility design (aka "smart" manufacturing)
- A key focus of the research area is to apply formal methods to requirements engineering
 - A formal method is a method on which the rules of inference can be shown mathematically to be valid
- Benefits
 - Improved system validation
 - Ability to better trace rationale
 - Improved systems engineering

Project Objective

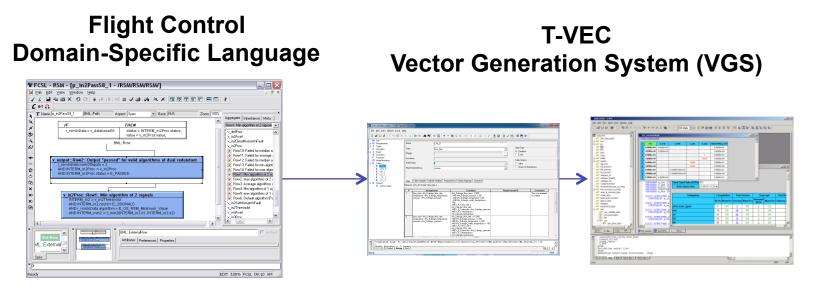
- Develop formal method representation of systems and requirements that facilitates management of requirements and generation of tests from requirements specifications
 - Support automating generation of system tests
 - Describe logical structure of envisaged system (its components and their interconnection)
 - Describe how interaction of components achieves system goals
- Apply formal method of representation to a closed-loop liquid circulating heat transfer (CHL) system
- Use resulting model and tooling to:
 - Analyze requirement/design specifications/models
 - Generate tests
 - Demonstrate traceability of tests to corresponding requirements

Part 2: Approach

Rationale

Design Theme: Leveraging Emerging and Enabling Technology

Domain Specific Modeling Languages and Tools

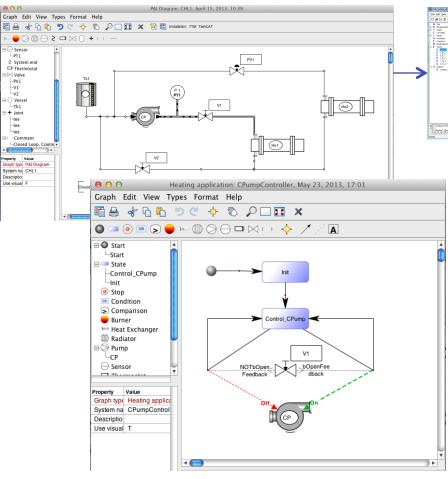


Approach: Key Themes

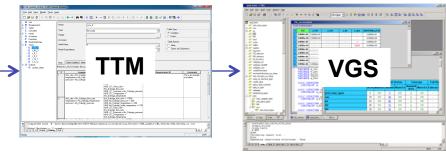
- Leverage Domain-Specific Modeling (DSM) Language
 - Provides relevant and intuitive graphical abstraction for the specific domain or subdomain
 - Allows for rich semantics required for formal analysis and test generation necessary for V&V effectiveness and efficiency
 - Addresses deficiencies in general purpose modeling approaches
- DSM tooling allows multiple views to be integrated
 - Model transformation built into the tools
 - Model languages are evolvable
- Integrates with formal analysis and test generation tools
 - Test generation provides effective test method
 - Formal methods hidden behind the scenes

Based on Demonstrated DSM Pattern from DARPA Sponsored Research

- DSM are easily evolvable
- Integrated analysis and test generation help in validating evolution of DSM modeling environment


Producible Adaptive Model-based Software (PAMS) technology to the development of safety critical flight control software. PAMS has been developed under the Defense Advanced Research Projects Agency (DARPA) Disruptive Manufacturing Technologies program. Contract # N00178-07-C-2011.

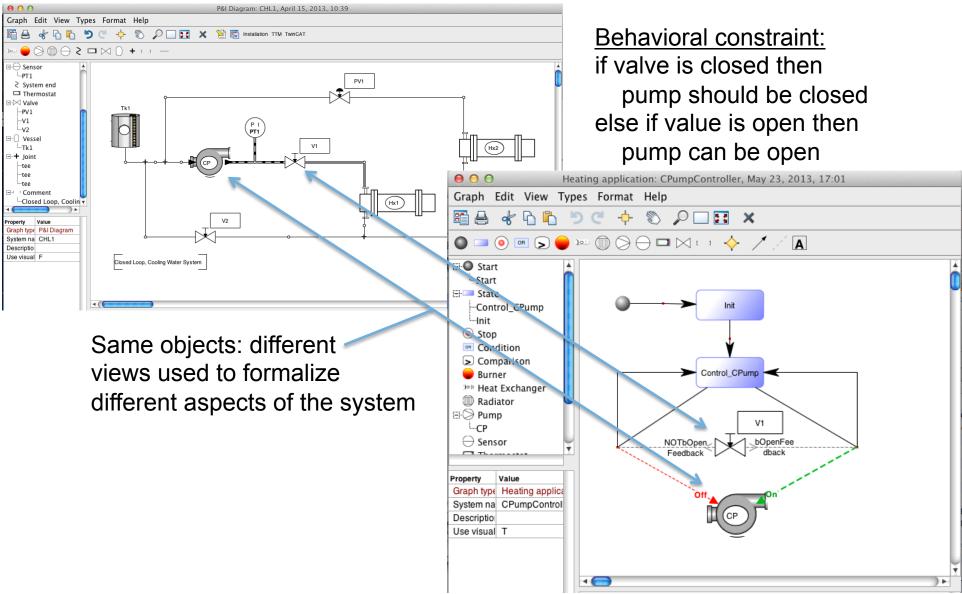
MODEL-BASED ADAPTATION OF FLIGHT-CRITICAL SYSTEMS, Sumit Ray, BAE Systems, Johnson City, New York, Gabor Karsai, Vanderbilt University, Nashville, Tennessee, Kevin M. McNeill, BAE Systems, Arlington, Virginia, Digital Avionics Systems Conference, 2009


Copyright © 2013, Mark R. Blackburn, Ph.D. or Knowledge Bytes, LCC.

NB Prototype Design integrates DSM with Formal Methods Tools

Domain Specific Modeling (DSM) for Process Facility Design

T-VEC Tabular Modeler (TTM) and T-VEC Vector Generation System (VGS)


- Model transformation
- Formal methods analysis
 - Theorem proving
 - Property checking
- Test vector generation
- Test driver generation
- Requirement-to-test traceability

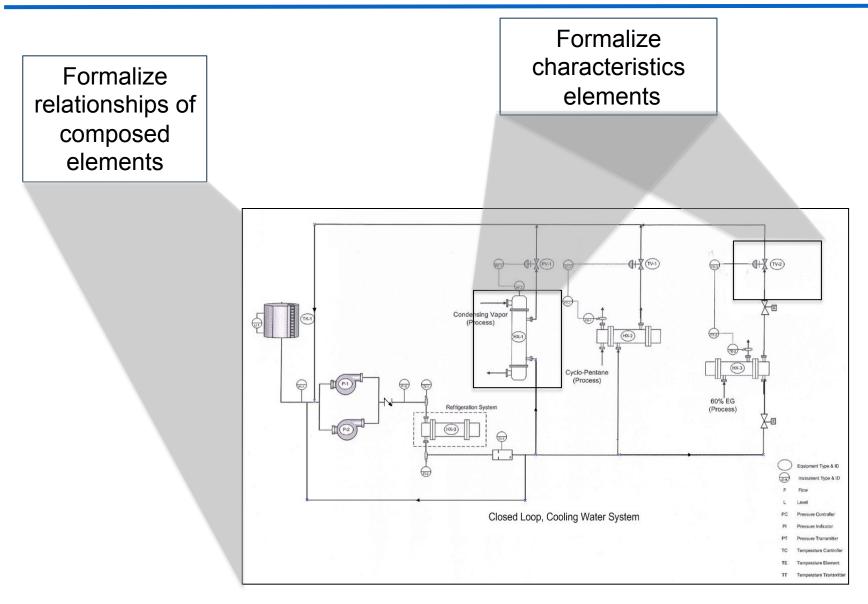
Copyright \circledast 2013, Mark R. Blackburn, Ph.D. or Knowledge Bytes, LCC.

•

Two Different View: Structural with Flow Properties and Behavioral

Copyright $\ensuremath{\mathbb{C}}$ 2013, Mark R. Blackburn, Ph.D. or Knowledge Bytes, LCC.

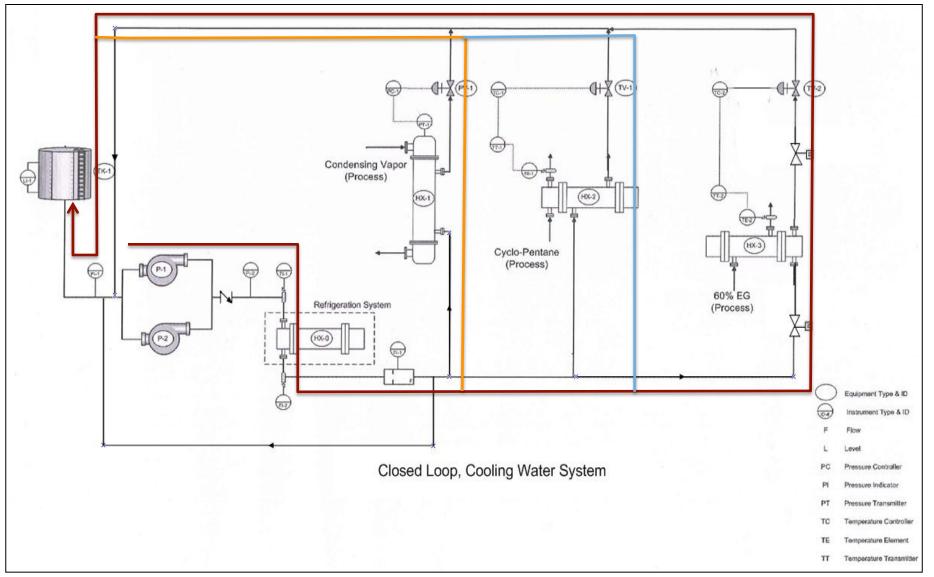
Part 3: Design and Usage Details


Analysis and test generation

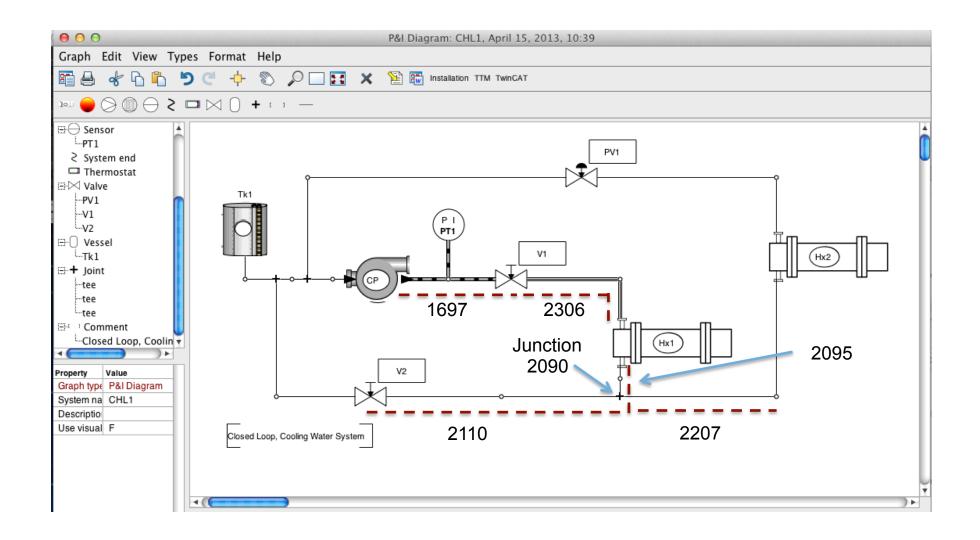
Operational scenarios

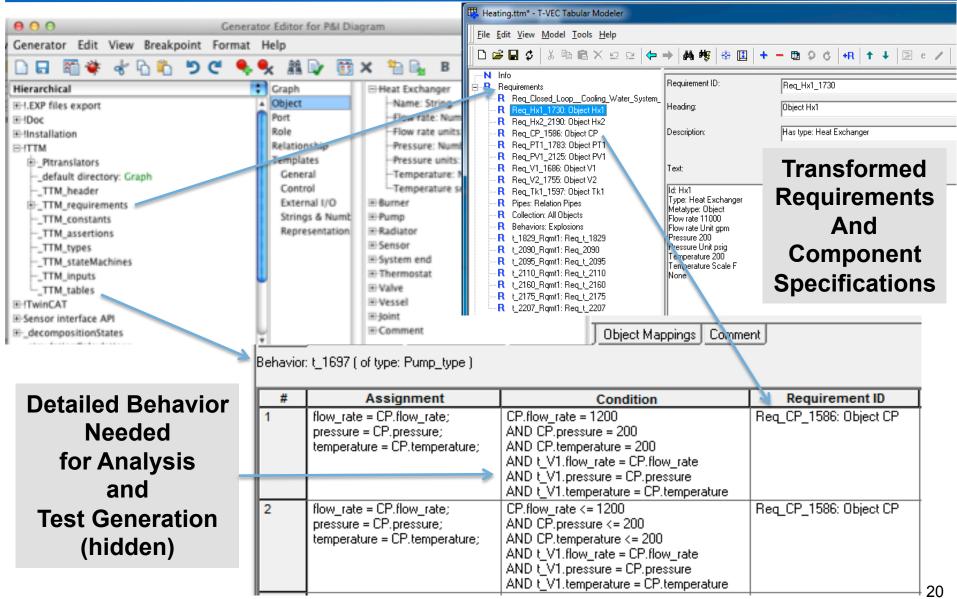
Demonstration

Formalize Component Behaviors and Properties and Composed System


Ж

DSM Captures Component Properties (example includes seeded defect)


	000		P&I Diagram: (CHL1, April 15, 2	2013, 10:39		Pipe: Relati	ionship	
	Graph Edit View Types F		Pipe Pipe: V1 Pipe: Hx1 Pipe: Hx1						
	○ C ∄ ∄ * B ≣ \ □ \$ ⊖ @ © € ● ∞		Diameter: 10						
	B Sensor	V U + I I -	Diamete	r: 10					
	L-PT1		PV1				10		_
	≥ System end □ Thermostat	γ				Cover:	none		÷
	⊟ ⊠ Valve −PV1	Tk1					none		
	V1 V2		(P PT)			thermally insu jacketed	lated	- 1
	⊟-O Vessel			í 🗖	V1		cooled or heat	ed	
	⊟-+ Joint					All O	Cancel	All Info	
	tee		Q						
	Er ⊂ Comment Closed Loop, Coolin ▼				Ē	(Hx1)	\square		
					L				
		Valve: Object							
	Name:	V1				Heat	Exchanger: Obj	ect	
	Number of valve ends:	🖲 Two			Name:	Γ	Hx1		
		🖲 Three			Flow rate:		11000		
	Valve type:	🔵 Normal			riow rate.		11000		
		O Manual O Control			Flow rate u	nits:	gpm		÷
	Closing by:	🖯 ball		/	Pressure:	Γ	200		
	Closing by.	butterfly			D				
		diaphragm			Pressure ur	nits:	psig		•
Potential		💿 needle			Temperatu	re:	200		
	Flow rate:	1200			Temperatu	re scale:	F		÷
Flow rate	Flow rate units:	gpm	÷						
Issue	ОК	Cancel	Info			ОК	Cancel	Info	11.


Model and Tests must cover all Flow Paths (partial view shown)

Model Transformation for PrototypeBased on Pipe and Junction Relations

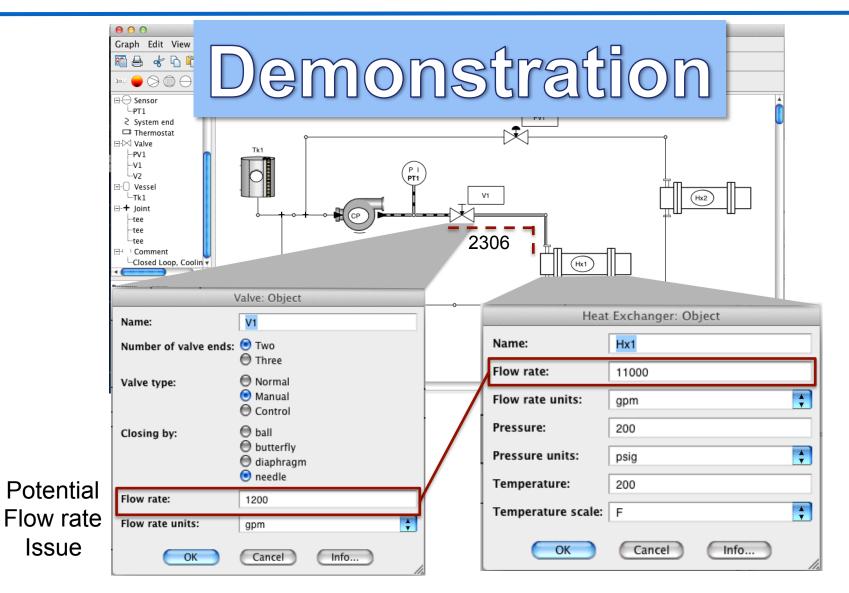
DSM Tool Includes Programmable ЖВ **Generator for Transforming Models**

Copyright © 2013, Mark R. Blackburn, Ph.D. or Knowledge Bytes, LCC.

Model Analysis and Test Generation Project Status

Heating Project Status

Project Filename: B:\projects\tvec_projects\metaEdit\Heating_system\Heating.prj


Total Test Case Comparisons	0
Total Test Comparison Failures	0
Total Test Vectors	31
Total Test Paths (DCPs)	21
Date Generated	07-14-13 16:37:21

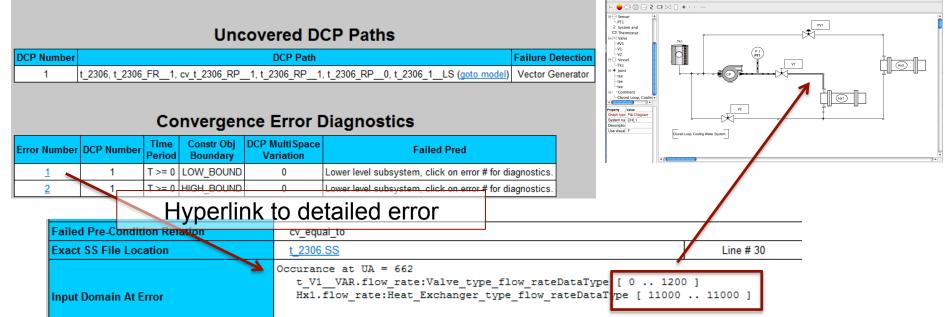
Subsystem	Compilation		Test Vectors		Coverage		Test Results	
	DCPs	Warn/Err	Vectors	Warn/Err	Untested DCPs	Warn/Err	Failures	Comparisons
t_1697	2	0/0	<u>3</u>	0/0	<u>0</u>	0/0	-	-
t <u>1829</u>	1	0/0	2	0/0	<u>0</u>	0/0	-	-
t_2090	3	0/0	2	0/4	<u>2 of 3</u>	0/12	-	-
t_2095	1	0/0	1	2/0	<u>0</u>	0/0	-	-
t_2110	1	0/0	2	0/0	<u>0</u>	0/0	-	
t_2160	1	0/0	1	0/0	<u>0</u>	0/0	-	-
t_2175	1	0/0	2	0/0	<u>0</u>	0/0	-	-
t_2207	1	0/0	1	0/0	<u>0</u>	0/0	-	-
t_2222	2	0/0	<u>3</u>	0/0	<u>0</u>	0/0	-	-
<u>t_2306</u>	2	0/0	2	0/2	<u>1 of 2</u>	0/6	-	-
<u>t_CP</u>	1	0/0	<u>2</u>	0/0	<u>0</u>	0/0	-	-
t <u>Hx1</u>	1	0/0	<u>2</u>	0/0	<u>0</u>	0/0	-	-
t_Hx2	1	0/0	2	0/0	<u>0</u>	0/0	-	-
t_PV1	1	0/0	<u>2</u>	0/0	<u>0</u>	0/0	-	-
<u>t_V1</u>	1	0/0	2	0/0	<u>0</u>	0/0	-	- r Knowledge By

Reflects Seeded Defect (see next slide for Demo details)

Copyright © 2013, Mark R. Blackburn, Ph.D. or Knowledge Bytes, LCC.

B Demonstration: Identify Seeded Defect between Valve and Heat Exchanger

t_2306 Coverage Analysis FAILED


Vector File: B:\projects\tvec_projects\metaEdit\Heating_system\test_vectors\t_2306.TST

Time Run	07-14-13 16:36:20			
Analyzer Version	4.0.0			
Total Number of DCPs	2			
DCPs Not Covered	1			
Predicates Requiring Coverage	11			
Predicates Not Covered	cv_t_2306_RP_1 t_2306_FR_1 5 t_2306 t_2306_1_LS t_2306_RP_1			
Total Coverage Errors	6			
Total Coverage Warnings	0			
Test Generation Failures	2			

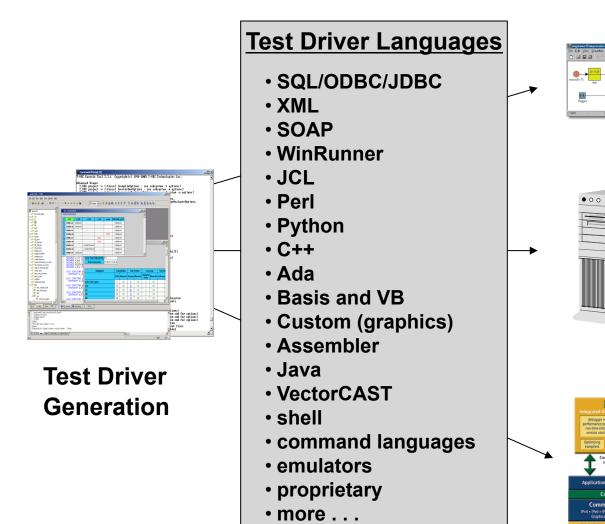
We are investigating alternatives to bring error information back to DSM Tool and Model Views

Graph Edit View Types Format Help

🕅 🖶 🐇 🗅 🛍 笋 🦿 🔶 🔎 🗆 🖬 🗙 🧏 🐯 Instation TTM

Model Analysis Links Defect (Unsatisfiable Constraint) to Model

		Be	havior:	: t_2306 (of type: Pump_type)			
2306 Coverage	Analysis F/		#	Assignment	Condition		
/ector File: B:\projects\tvec	_projects\metaEdit	Heating_sy 1	1	flow_rate = Hx1.flow_rate; pressure = Hx1.pressure;	Hx1.flow_rate = 11000 AND Hx1.pressure = 200		
Time Run	07-14-13 16:36:20			temperature = Hx1.temperature;	AND Hx1.temperature = 200		
Analyzer Version	4.0.0				AND t_V1.flow_rate = Hx1.flow_rate		
Total Number of DCPs	2				AND t_V1.pressure = Hx1.pressure		
DCPs Not Covered	1			Annu anta i la 1 Annu antas	AND t_V1.temperature = Hx1.temperature		
Predicates Requiring Coverage	<mark>je</mark> 11	- 2	2	flow_rate = Hx1.flow_rate; pressure = Hx1.pressure;	Hx1.flgw_rate <= 11000 AND Ax1.pressure <= 200		
Predicates Not Covered	cv_t_2306_RP t_2306_FR1 5 t_2306 t_2306_t_LS t_2306_RP1			temperature = Hx1.temperature;	AND Hx1.pressure <= 200 AND Hx1.temperature <= 200 AND t_V1.flow_rate = Hx1.flow_rate AND t_V1.pressure = Hx1.pressure AND t_V1.temperature = Hx1.temperature		
Total Coverage Errors	6						
Total Coverage Warnings	0	1					
Test Generation Failures	2	1					
Hyperlink to model defect							
	Unc	overed D	ОСР	Paths			
)CP Number		DCP Path		Fa	ilure Detection		
1 t_2306, t_2306_FR_1, cv_t_2306_RP_1, t_2306_RP_1, t_2306_RP_0, t_2306_1_LS (<u>goto model</u>) Vector Generator							
Convergence Error Diagnostics							
-rror Number DC P Number	Time Constr Obj Period Boundary	DCP MultiSpac Variation	e	Failed Pred			
<u>1</u> 1 1	<pre>F >= 0 LOW_BOUND</pre>	0	Lower	r level subsystem, click on error # for diagn	lostics.		
<u>2</u> 1 1	<pre>F >= 0 HIGH_BOUND</pre>	0	Lower	r level subsystem, click on error # for diagn	lostics.		


Copyright © 2013, Mark R. Blackburn, Ph.D. or Knowledge Bytes, LCC.

B Satisfiable Model Constraints Have Generated Test with Requirement Traceability

Test Vectors (Compress	sed) For	Subsy	ystem : t 1697			
Vector File: B:\projects\tvec_project Open Model Report Legend For Vector Table				тэт		
Jump to Page: Vectors 💌						
<u>Test#3</u>			_CP_1586: Object CP Req_V1_1686: Object V1		Link Requiremen	
Name	Value	Тур	e Relevant Domain		Model, and Reqι	uirement ID
t_1697OUT.flow_rate	0	INTEG	GER 01200		traced to gener	rated test
t_1697OUT.pressure	0	INTEG	GER 0200			
t_1697OUT.temperature	-100	INTEG	ER -100200			
CP.flow_rate	0	INTEG	ER 01200			
CP.pressure	0	INTEG	BER 0200			
CP.temperature	-100	INTEG	ER -100200			
V1.flow_rate	0	INTEG	ER 01200			
V1.pressure	0 Be	havior: t_	_1697 (of type: Pump_typ	e)		\
V1.temperature	0	I				
V1.valve_type	"[\.]+	# EI	Assignment low_rate = CP.flow_rate;		Condition CP.flow_rate = 1200	Requirement ID Req_CP_1586: Object CP 👻
V1.close_by	"[\.]+	P	pressure = CP.pressure;		AND CP.pressure = 200	Reg Closed Loop Cooling
V1.number_valve_ends	"[\.]+	te	emperature = CP.tempera		AND CP.temperature = 200 AND t_V1.flow_rate = CP.flow_rate	Req_Hx1_1730: Object Hx1
a_V1VAR	(TRUE =				AND t_V1.pressure = CP.pressure	□ Req_Hx2_2190: Object Hx2 ▼ Req_CP_1586: Object CP
t_V1VAR.flow_rate	0		· ··		AND t_V1.temperature = CP.temperature	Req_PT1_1783: Object PT1
t_V1VAR.pressure	0	INTEG	GER 0200			
t_V1VAR.temperature	-100	INTEG	ER -100200			
t_V1VAR.valve_type		STRIN	NG """z"			
t_V1VAR.close_by		STRIN	NG """z"			
t_V1VAR.number_valve_ends		STRIN	NG """z"	Dh	.D. or Knowledge Bytes, LCC.	

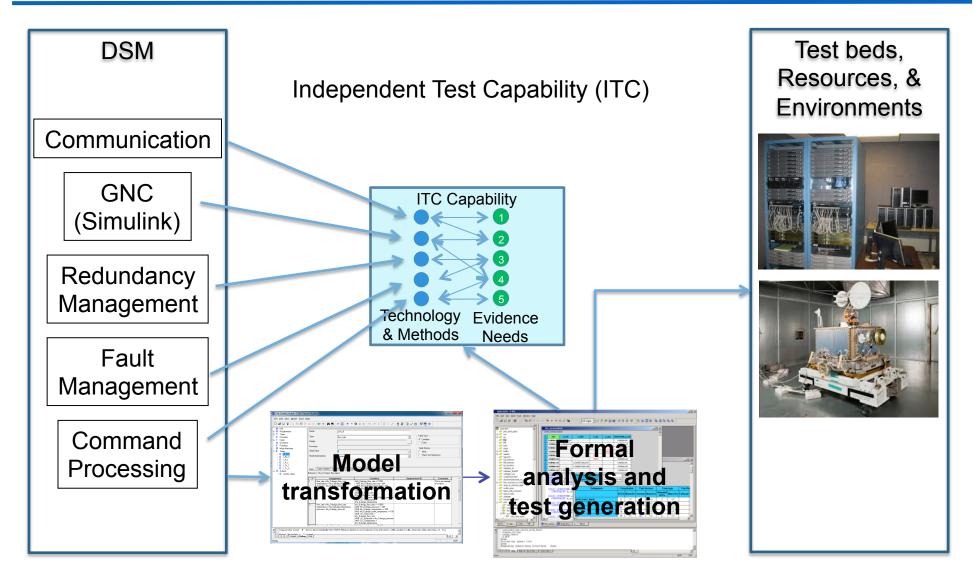
Test Driver Generation to Many Languages and Environments

Example

Matlab Simulation

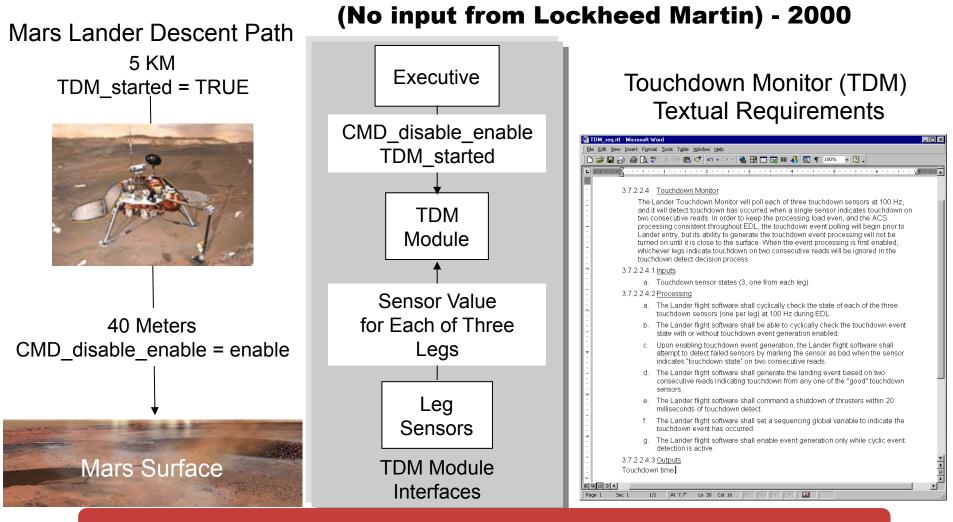
Host emulations and integrated simulation

<u>Target</u> Windriver Workbench, GreenHills Multi IDE

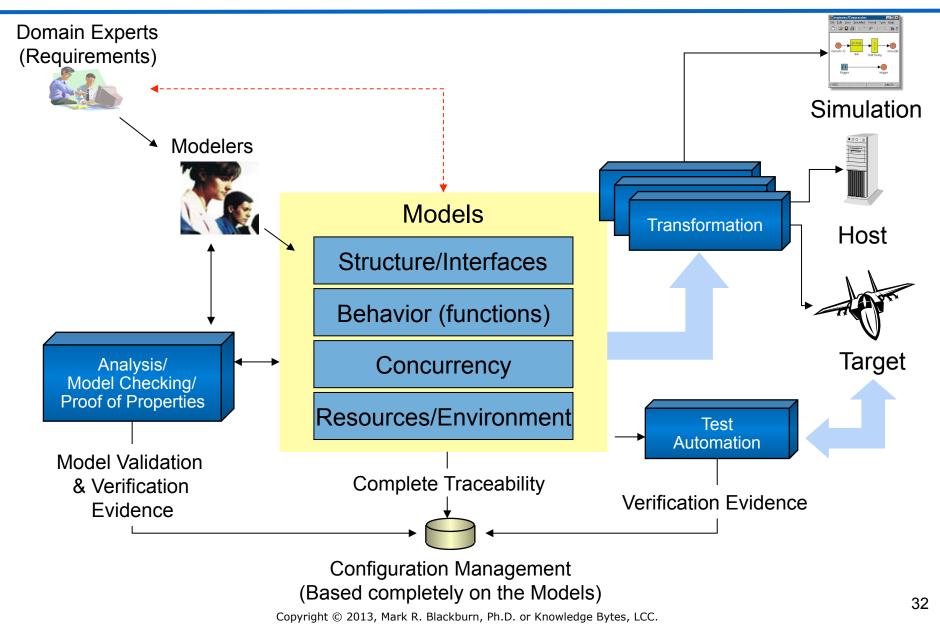

vel **OS**it

- See following slide for Relevance to NASA
- DSM languages provide for graphically intuitive approaches to integrate domain-specific views across related engineering disciplines
- DSMs provide enabling technologies that integrate generators to support tool chain integration leveraging test generation and analysis tools
- DSM are evolvable allowing the modeling capabilities to keep pace with changing technologies
- Tool chains provide greater V&V coverage by leverage the most effective tools for test generation leading to greater efficiencies for V&V and software/systems engineering

MB DSM Transformation to Formal Analysis and Test Tools Maps to ITC Capability

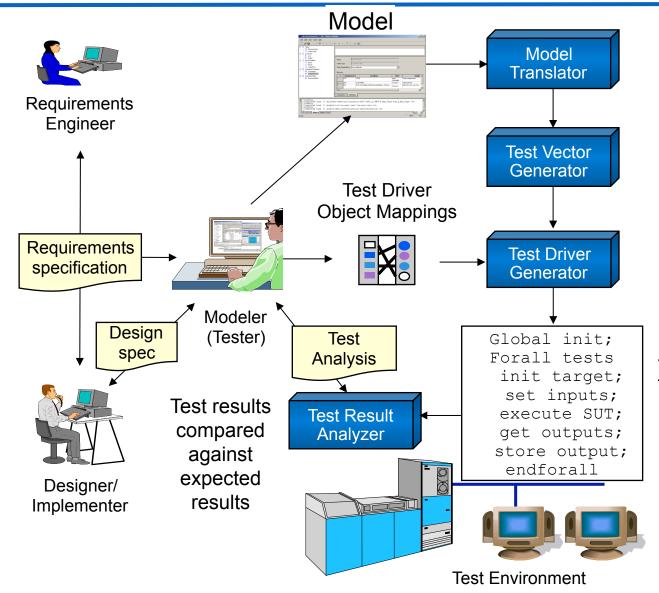

- For more information contact:
 - Mark R. Blackburn, Ph.D.
 - www.markblackburn.com
 - Blackburn@knowledgebytes.net
 - 703.431.4463

Backup


Notable Accomplishment: Discovered Mars Polar Lander Error in Fewer Than 24 Hours

35 Million Miles at cost of \$165 Million - 40 Meters from landing

"Idealized" View of Model-Driven Engineering



- Models represent requirements & design information independent of language, platform, and architecture
- Models are easier to understand than underlying code
 - Supports ability to build larger, more complex systems and improve maintainability
- Usually leverages code generation patterns proven over time – supporting more robust design
- Promotes iterative application development to better assess design/implementation early
 - Getting the right system sometimes supported by simulation and visualization
- Tests and documentation are byproducts

Requirement-Driven Model-based Process and the Key Development Roles

Modeler captures required behavior and logical variations of data and control in terms of interfaces

Test driver schemas define a pattern for generating test scripts

Test Script is Generated from Translated Model and Generated Tests